cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A351947 Numbers k for which A327500(k) <> A351946(k).

Original entry on oeis.org

450, 882, 900, 1764, 2178, 2450, 3042, 3675, 4356, 4900, 5202, 6050, 6084, 6498, 7350, 7560, 8450, 9075, 9522, 10404, 11025, 11858, 11880, 12100, 12675, 12996, 13500, 14040, 14450, 15138, 16562, 16632, 16900, 17298, 17787, 18050, 18150, 18360, 19044, 19656, 20520, 21000, 21675, 23716, 24642, 24840, 24843, 25350
Offset: 1

Views

Author

Antti Karttunen, Apr 03 2022

Keywords

Crossrefs

Programs

A362613 Number of co-modes in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 05 2023

Keywords

Comments

First differs from A327500 at n = 180.
First differs from A351946 at n = 180.
First differs from A353507 at n = 180.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}.
a(n) depends only on the prime signature of n. - Andrew Howroyd, May 08 2023

Examples

			The factorization of 180 is 2*2*3*3*5, co-modes {5}, so a(180) = 1.
The factorization of 900 is 2*2*3*3*5*5, co-modes {2,3,5}, so a(900) = 3.
The factorization of 8820 is 2*2*3*3*5*7*7, co-modes {5}, so a(8820) = 1.
		

Crossrefs

Positions of first appearances are A002110.
Positions of 1's are A359178, counted by A362610.
Positions of terms > 1 are A362606, counted by A362609.
For mode we have A362611, counted by A362614.
Counting partitions by this statistic (co-mode count) gives A362615.
A027746 lists prime factors (with multiplicity).
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    Table[x=Last/@If[n==1,0,FactorInteger[n]];Count[x,Min@@x],{n,100}]
  • PARI
    a(n) = if(n==1, 0, my(f=factor(n)[,2], m=vecmin(f)); #select(v->v==m, f)) \\ Andrew Howroyd, May 08 2023
  • Python
    from sympy import factorint
    def A362613(n):
        v = factorint(n).values()
        w = min(v,default=0)
        return sum(1 for e in v if e<=w) # Chai Wah Wu, May 08 2023
    

A353507 Product of multiplicities of the prime exponents (signature) of n; a(1) = 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 19 2022

Keywords

Comments

Warning: If the prime multiplicities of n are a multiset y, this sequence gives the product of multiplicities in y, not the product of y.
Differs from A351946 at A351946(1260) = 4, a(1260) = 2.
Differs from A327500 at A327500(450) = 3, a(450) = 2.
We set a(1) = 0 so that the positions of first appearances are the primorials A002110.
Also the product of the prime metasignature of n (row n of A238747).

Examples

			The prime signature of 13860 is (2,2,1,1,1), with multiplicities (2,3), so a(13860) = 6.
		

Crossrefs

Positions of first appearances are A002110.
The prime indices themselves have product A003963, counted by A339095.
The prime signature itself has product A005361, counted by A266477.
A001222 counts prime factors with multiplicity, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A071625 counts distinct prime exponents (third omega).
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, sorted A353742.
A323022 gives fourth omega.

Programs

  • Maple
    f:= proc(n) local M,s;
      M:= ifactors(n)[2][..,2];
      mul(numboccur(s,M),s=convert(M,set));
    end proc:
    f(1):= 0:
    map(f, [$1..100]); # Robert Israel, May 19 2023
  • Mathematica
    Table[If[n==1,0,Times@@Length/@Split[Sort[Last/@FactorInteger[n]]]],{n,100}]
    Join[{0},Table[Times@@(Length/@Split[FactorInteger[n][[;;,2]]]),{n,2,100}]] (* Harvey P. Dale, Oct 20 2024 *)
  • Python
    from math import prod
    from itertools import groupby
    from sympy import factorint
    def A353507(n): return 0 if n == 1 else prod(len(list(g)) for k, g in groupby(factorint(n).values())) # Chai Wah Wu, May 20 2022

Formula

A327499 Quotient of n over the maximum divisor of n whose prime multiplicities are distinct.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 3, 2, 5, 2, 1, 2, 3, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 2, 1, 3, 1, 2, 1, 1, 5, 6, 1, 1, 3, 10, 1, 1, 1, 2, 1, 1, 7, 6, 1, 1, 1, 2, 1, 3, 5, 2, 3, 1, 1, 2, 7, 1, 3, 2, 5, 1, 1, 1, 1, 2, 1, 6, 1, 1, 15
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2019

Keywords

Comments

A number's prime multiplicities are also called its (unsorted) prime signature.

Examples

			The maximum such divisor of 60 is 20, so a(60) = 3.
		

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    Table[n/Max[Select[Divisors[n],UnsameQ@@Last/@FactorInteger[#]&]],{n,100}]
  • PARI
    A351564(n) = issquarefree(factorback(apply(e->prime(e),(factor(n)[,2]))));
    A327499(n) = fordiv(n,d,if(A351564(n/d), return(d))); \\ Antti Karttunen, Apr 02 2022

Formula

a(n) = n/A327498(n).

Extensions

Data section extended up to 105 terms by Antti Karttunen, Apr 02 2022

A336617 a(n) = n!/d where d = A336616(n) is the maximum divisor of n! with distinct prime multiplicities.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 5, 5, 1, 7, 7, 77, 275, 11, 11, 143, 143, 2431, 2431, 2431, 221, 4199, 4199, 4199, 39083, 39083, 39083, 898909, 898909, 26068361, 26068361, 215441, 2141737, 2141737, 2141737, 66393847, 1009885357, 7953594143, 7953594143, 294282983291
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The maximum divisor of 13! with distinct prime multiplicities is 80870400, so a(13) = 13!/80870400 = 77.
		

Crossrefs

A327499 is the non-factorial generalization, with quotient A327498.
A336414 counts these divisors.
A336616 is the maximum divisor d.
A336619 is the version for equal prime multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A336415 counts divisors of n! with equal prime multiplicities.

Programs

  • Mathematica
    Table[n!/Max@@Select[Divisors[n!],UnsameQ@@Last/@If[#==1,{},FactorInteger[#]]&],{n,0,15}]

Formula

a(n) = A327499(n!).

Extensions

More terms from Jinyuan Wang, Jul 31 2020

A351946 a(n) = A051903(A181819(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 03 2022

Keywords

Crossrefs

Differs from A327500 for the first time at n=450, where a(450) = 2, while A327500(450) = 3. See A351947 for all such positions.

Programs

  • Mathematica
    {0}~Join~Array[Max[FactorInteger[#][[All, -1]]] &@ Apply[Times, Prime[FactorInteger[#][[All, -1]]]] &, 104, 2] (* Michael De Vlieger, Apr 03 2022 *)
  • PARI
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A351946(n) = A051903(A181819(n));

Formula

a(n) = A051903(A181819(n)).

A374470 a(n) = gcd(bigomega(n), A064547(n)), where A064547 is the count of 1-bits in the exponents of the prime factorization of n, and bigomega is the number of prime factors of n (with multiplicity).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 3, 1, 1, 1, 2, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 14 2024

Keywords

Crossrefs

Cf. A001222, A064547, A374471, A374472 (indices of even terms), A374473 (of odd terms).
Differs from A327500, A362613, A351946, A353507 first at n=60, where a(60) = 1.
Differs from A362611 first at n=64, where a(64) = 2, while A362611(64) = 1.

Programs

  • PARI
    A064547(n) = { my(f = factor(n)[, 2]); sum(k=1, #f, hammingweight(f[k])); };
    A374470(n) = gcd(bigomega(n),A064547(n));

A327503 Number of steps to reach a fixed point starting with n and repeatedly taking the quotient by the maximum divisor that is 1 or not a perfect power (A327501, A327502).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2019

Keywords

Comments

First differs from A052409 and A158378 at a(216) = 2, A052409(216) = A158378(216) = 3.
A multiset is aperiodic if its multiplicities are relatively prime. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). Heinz numbers of aperiodic multisets are numbers that are not perfect powers (A007916).
a(n) does not depend only on the prime signature of n. A351948 gives the positions where a(A046523(n)) <> a(n). n = 125000 is the first time this happens, see the examples. - Antti Karttunen, Apr 03 2022

Examples

			The transformation A327502 takes 144 -> 2 -> 1, so a(144) = 2.
From _Antti Karttunen_, Apr 03 2022: (Start)
For n = 1728 = 2^6 * 3^3, A327501(1728) = 864 = 2^5 * 3^3, and therefore A327502(1728) = 1728/864 = 2. A327501(2) = 2, thus A327502(2) = 2/2 = 1, so we reached 1 (= A327502(1)) in two steps, and therefore a(1728) = 2.
For n = 125000 = 2^3 * 5^6, A327501(125000) = 31250 = 2^1 * 5^6, and therefore A327502(125000) = 125000/31250 = 4. A327501(4) = 2, thus A327502(4) = 4/2 = 2, from which we reach 1 in one more step, therefore a(125000) = 3.
(End)
		

Crossrefs

See link for additional cross-references.
Cf. also A327500.

Programs

  • Mathematica
    Table[Length[FixedPointList[#/Max[Select[Divisors[#],GCD@@Last/@FactorInteger[#]==1&]]&,n]]-2,{n,100}]
  • PARI
    A327502(n) = if(n==1, 1, n/vecmax(select(x->((x>1) && !ispower(x)), divisors(n))));
    A327503(n) = { my(u=A327502(n)); if(u==n, 0, 1+A327503(u)); }; \\ Antti Karttunen, Apr 02 2022

Formula

a(2^n) = n.

Extensions

Data section extended up to 105 terms by Antti Karttunen, Apr 02 2022

A337075 Number of strict chains of divisors in A130091 (numbers with distinct prime multiplicities) starting with a proper divisor of n! and ending with 1.

Original entry on oeis.org

1, 1, 1, 3, 14, 48, 384, 1308, 40288, 933848, 21077680, 75690016, 5471262080, 7964665440, 54595767744, 17948164982144, 3454946386353664, 5010658671663616, 723456523262697984, 950502767770273280, 165679731871366906880, 8443707247468681128448
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2020

Keywords

Examples

			The a(1) = 1 through a(4) = 14 chains (with n! prepended):
  1  2/1  6/1    24/1
          6/2/1  24/2/1
          6/3/1  24/3/1
                 24/4/1
                 24/8/1
                 24/12/1
                 24/4/2/1
                 24/8/2/1
                 24/8/4/1
                 24/12/2/1
                 24/12/3/1
                 24/12/4/1
                 24/8/4/2/1
                 24/12/4/2/1
		

Crossrefs

A336571 is the generalization to not just factorial numbers.
A337104 is the version for chains containing n!.
A000005 counts divisors.
A001055 counts factorizations.
A032741 counts proper divisors.
A071625 counts distinct prime multiplicities.
A074206 counts chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336414 counts divisors of n! with distinct prime multiplicities.
A336423 counts chains using A130091, with maximal case A336569.
A336424 counts factorizations using A130091.
A336425 counts divisible pairs of divisors of n!, both in A130091.

Programs

  • Mathematica
    chnstr[n_]:=If[n==1,1,Sum[chnstr[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]];
    Table[chnstr[n!],{n,0,5}]

Formula

a(n) = A337104(n) whenever A337104(n) != 0.
a(n) = A336571(n!).
Showing 1-9 of 9 results.