cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A351947 Numbers k for which A327500(k) <> A351946(k).

Original entry on oeis.org

450, 882, 900, 1764, 2178, 2450, 3042, 3675, 4356, 4900, 5202, 6050, 6084, 6498, 7350, 7560, 8450, 9075, 9522, 10404, 11025, 11858, 11880, 12100, 12675, 12996, 13500, 14040, 14450, 15138, 16562, 16632, 16900, 17298, 17787, 18050, 18150, 18360, 19044, 19656, 20520, 21000, 21675, 23716, 24642, 24840, 24843, 25350
Offset: 1

Views

Author

Antti Karttunen, Apr 03 2022

Keywords

Crossrefs

Programs

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A362613 Number of co-modes in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 05 2023

Keywords

Comments

First differs from A327500 at n = 180.
First differs from A351946 at n = 180.
First differs from A353507 at n = 180.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}.
a(n) depends only on the prime signature of n. - Andrew Howroyd, May 08 2023

Examples

			The factorization of 180 is 2*2*3*3*5, co-modes {5}, so a(180) = 1.
The factorization of 900 is 2*2*3*3*5*5, co-modes {2,3,5}, so a(900) = 3.
The factorization of 8820 is 2*2*3*3*5*7*7, co-modes {5}, so a(8820) = 1.
		

Crossrefs

Positions of first appearances are A002110.
Positions of 1's are A359178, counted by A362610.
Positions of terms > 1 are A362606, counted by A362609.
For mode we have A362611, counted by A362614.
Counting partitions by this statistic (co-mode count) gives A362615.
A027746 lists prime factors (with multiplicity).
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    Table[x=Last/@If[n==1,0,FactorInteger[n]];Count[x,Min@@x],{n,100}]
  • PARI
    a(n) = if(n==1, 0, my(f=factor(n)[,2], m=vecmin(f)); #select(v->v==m, f)) \\ Andrew Howroyd, May 08 2023
  • Python
    from sympy import factorint
    def A362613(n):
        v = factorint(n).values()
        w = min(v,default=0)
        return sum(1 for e in v if e<=w) # Chai Wah Wu, May 08 2023
    

A353507 Product of multiplicities of the prime exponents (signature) of n; a(1) = 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 19 2022

Keywords

Comments

Warning: If the prime multiplicities of n are a multiset y, this sequence gives the product of multiplicities in y, not the product of y.
Differs from A351946 at A351946(1260) = 4, a(1260) = 2.
Differs from A327500 at A327500(450) = 3, a(450) = 2.
We set a(1) = 0 so that the positions of first appearances are the primorials A002110.
Also the product of the prime metasignature of n (row n of A238747).

Examples

			The prime signature of 13860 is (2,2,1,1,1), with multiplicities (2,3), so a(13860) = 6.
		

Crossrefs

Positions of first appearances are A002110.
The prime indices themselves have product A003963, counted by A339095.
The prime signature itself has product A005361, counted by A266477.
A001222 counts prime factors with multiplicity, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A071625 counts distinct prime exponents (third omega).
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, sorted A353742.
A323022 gives fourth omega.

Programs

  • Maple
    f:= proc(n) local M,s;
      M:= ifactors(n)[2][..,2];
      mul(numboccur(s,M),s=convert(M,set));
    end proc:
    f(1):= 0:
    map(f, [$1..100]); # Robert Israel, May 19 2023
  • Mathematica
    Table[If[n==1,0,Times@@Length/@Split[Sort[Last/@FactorInteger[n]]]],{n,100}]
    Join[{0},Table[Times@@(Length/@Split[FactorInteger[n][[;;,2]]]),{n,2,100}]] (* Harvey P. Dale, Oct 20 2024 *)
  • Python
    from math import prod
    from itertools import groupby
    from sympy import factorint
    def A353507(n): return 0 if n == 1 else prod(len(list(g)) for k, g in groupby(factorint(n).values())) # Chai Wah Wu, May 20 2022

Formula

A374470 a(n) = gcd(bigomega(n), A064547(n)), where A064547 is the count of 1-bits in the exponents of the prime factorization of n, and bigomega is the number of prime factors of n (with multiplicity).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 3, 1, 1, 1, 2, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 14 2024

Keywords

Crossrefs

Cf. A001222, A064547, A374471, A374472 (indices of even terms), A374473 (of odd terms).
Differs from A327500, A362613, A351946, A353507 first at n=60, where a(60) = 1.
Differs from A362611 first at n=64, where a(64) = 2, while A362611(64) = 1.

Programs

  • PARI
    A064547(n) = { my(f = factor(n)[, 2]); sum(k=1, #f, hammingweight(f[k])); };
    A374470(n) = gcd(bigomega(n),A064547(n));
Showing 1-5 of 5 results.