A327507 Number of set partitions of [n] where each subset is again partitioned into six nonempty subsets.
1, 0, 0, 0, 0, 0, 1, 21, 266, 2646, 22827, 179487, 1324114, 9357348, 64991927, 469882413, 4008715074, 46160063586, 691114045987, 11535301966755, 194240576089826, 3186376950695400, 50592286213334943, 780299037934036929, 11788245937182037114
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..494
- Wikipedia, Partition of a set
Crossrefs
Column k=6 of A324162.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j) *binomial(n-1, j-1)*Stirling2(j, 6), j=6..n)) end: seq(a(n), n=0..27);
-
PARI
a(n) = sum(k=0, n\6, (6*k)!*stirling(n, 6*k, 2)/(6!^k*k!)); \\ Seiichi Manyama, May 07 2022
Formula
E.g.f.: exp((exp(x)-1)^6/6!).
a(n) = Sum_{k=0..floor(n/6)} (6*k)! * Stirling2(n,6*k)/(6!^k * k!). - Seiichi Manyama, May 07 2022