A327508 Number of set partitions of [n] where each subset is again partitioned into seven nonempty subsets.
1, 0, 0, 0, 0, 0, 0, 1, 28, 462, 5880, 63987, 627396, 5715424, 49330996, 408921513, 3292212924, 26136933186, 211891946448, 1910903676319, 21958686224932, 338516695449108, 6257281367040396, 122152192372692405, 2369188918134769500, 44783158458575933110
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..496
- Wikipedia, Partition of a set
Crossrefs
Column k=7 of A324162.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j) *binomial(n-1, j-1)*Stirling2(j, 7), j=7..n)) end: seq(a(n), n=0..27);
-
PARI
a(n) = sum(k=0, n\7, (7*k)!*stirling(n, 7*k, 2)/(7!^k*k!)); \\ Seiichi Manyama, May 07 2022
Formula
E.g.f.: exp((exp(x)-1)^7/7!).
a(n) = Sum_{k=0..floor(n/7)} (7*k)! * Stirling2(n,7*k)/(7!^k * k!). - Seiichi Manyama, May 07 2022