A327509 Number of set partitions of [n] where each subset is again partitioned into eight nonempty subsets.
1, 0, 0, 0, 0, 0, 0, 0, 1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141770488, 20416870188, 189100389270, 1713143123640, 15314761051669, 137723007972924, 1310008783707360, 14647748873844240, 215375952901752225, 4079250159907459680
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..498
- Wikipedia, Partition of a set
Crossrefs
Column k=8 of A324162.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j) *binomial(n-1, j-1)*Stirling2(j, 8), j=8..n)) end: seq(a(n), n=0..27);
-
PARI
a(n) = sum(k=0, n\8, (8*k)!*stirling(n, 8*k, 2)/(8!^k*k!)); \\ Seiichi Manyama, May 07 2022
Formula
E.g.f.: exp((exp(x)-1)^8/8!).
a(n) = Sum_{k=0..floor(n/8)} (8*k)! * Stirling2(n,8*k)/(8!^k * k!). - Seiichi Manyama, May 07 2022