A327511 Number of set partitions of [n] where each subset is again partitioned into ten nonempty subsets.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 55, 1705, 39325, 752752, 12662650, 193754990, 2758334150, 37112163803, 477297033785, 5917585057033, 71187151690655, 835145968875284, 9593573078823360, 108264887496309962, 1203738001326003000, 13226402531839795155
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..502
- Wikipedia, Partition of a set
Crossrefs
Column k=10 of A324162.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j) *binomial(n-1, j-1)*Stirling2(j, 10), j=10..n)) end: seq(a(n), n=0..27);
-
PARI
a(n) = sum(k=0, n\10, (10*k)!*stirling(n, 10*k, 2)/(10!^k*k!)); \\ Seiichi Manyama, May 07 2022
Formula
E.g.f.: exp((exp(x)-1)^10/10!).
a(n) = Sum_{k=0..floor(n/10)} (10*k)! * Stirling2(n,10*k)/(10!^k * k!). - Seiichi Manyama, May 07 2022