A327548 Total number of compositions in the compositions of partitions of n.
0, 1, 4, 11, 34, 85, 248, 603, 1630, 4017, 10308, 24855, 63210, 150141, 369936, 882083, 2135606, 5023689, 12064092, 28167919, 66828418, 155569685, 364983208, 844175675, 1971322574, 4533662817, 10498550260, 24077361031, 55432615194, 126492183213, 289997946944
Offset: 0
Keywords
Examples
a(3) = 11 = 1+1+1+1+2+2+3 counts the compositions in 3, 21, 12, 111, 2|1, 11|1, 1|1|1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3202
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, b(n, i-1)+(p->p+[0, p[1]])(2^(i-1)*b(n-i, min(n-i, i))))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..32);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, b[n, i - 1] + With[{p = 2^(i - 1) b[n - i, Min[n - i, i]]}, p + {0, p[[1]]}]]]; a[n_] := b[n, n][[2]]; a /@ Range[0, 32] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=1..n} k * A327549(n,k).
a(n) ~ log(2) * (3/(Pi^2 - 6*log(2)^2))^(1/4) * 2^(n-1) * exp(sqrt((Pi^2 - 6*log(2)^2)*n/3)) / (sqrt(Pi) * n^(1/4)). - Vaclav Kotesovec, Sep 19 2019