A327571 Triangle T(n,k) read by rows giving the number of zeroless polydivisible numbers in base n that contains only "k" in the digits with 1 <= k <= n-1.
1, 2, 2, 1, 3, 1, 2, 2, 4, 2, 1, 2, 1, 2, 1, 4, 4, 4, 4, 6, 4, 1, 2, 1, 2, 1, 3, 1, 2, 2, 4, 2, 2, 4, 2, 2, 1, 3, 1, 4, 1, 3, 1, 4, 1, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4
Offset: 2
Examples
n | zeroless polydivisible numbers with all digits the same in base n --+------------------------------------------------------------------ 2 | [1] 3 | [1, 11], [2, 22] 4 | [1], [2, 22, 222], [3] So T(2,1) = 1, T(3,1) = 2, T(3,2) = 2, T(4,1) = 1, T(4,2) = 3, T(4,3) = 1. Triangle begins: n\k | 1 2 3 4 5 6 7 8 9 10 11 12 -----+------------------------------------ 2 | 1; 3 | 2, 2; 4 | 1, 3, 1; 5 | 2, 2, 4, 2; 6 | 1, 2, 1, 2, 1; 7 | 4, 4, 4, 4, 6, 4; 8 | 1, 2, 1, 2, 1, 3, 1; 9 | 2, 2, 4, 2, 2, 4, 2, 2; 10 | 1, 3, 1, 4, 1, 3, 1, 4, 1; 11 | 2, 2, 6, 2, 2, 6, 2, 2, 6, 2; 12 | 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1; 13 | 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4;
Links
- Seiichi Manyama, Rows n = 2..141, flattened
- Wikipedia, Polydivisible number.