cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327581 a(1) is the smallest prime p such that 6*p^2-1 and 6*p^2+1 are twin primes; for n > 1, a(n) is the smallest prime q > a(n-1) such that 6*q^prime(n)-1 and 6*q^prime(n)+1 are twin primes or 0 if no solution exists.

Original entry on oeis.org

5, 0, 2557, 51137, 52057, 55373, 88867, 95273, 179947, 236653, 993647, 1010467, 1935533, 2031767, 2138803, 2849317, 8031343, 11696563, 11715133, 18125993, 22615493, 26766633, 26801393, 29963077, 39377893, 58282927, 70354657, 98988257, 119772847, 141442493, 145460123
Offset: 1

Views

Author

Pierre CAMI, Sep 17 2019

Keywords

Comments

For prime(2) = 3 there is no solution such that 6*q^3-1 and 6*q^3+1 with q prime are twin primes. Because 7 divides 6*p^3-1 when p == 3, 5, 6 mod 7, 7 divides 6*p^3+1 when p == 1, 2, 4 mod 7. Therefore p can only be 7. But then 6*7^3-1 = 11^2*17 and 6*7^3+1 = 29*71 are not prime numbers, so a(2)=0.

Programs

  • PARI
    findp(n, pmin) = {my(pmin = nextprime(pmin+1), q); forprime(p=pmin, , if (isprime(q=6*p^prime(n)-1) && isprime(q+2), return(p));); }
    lista(nn) = {my(lasta = 2, newa); print1(findp(1, lasta), ", 0"); for (n=3, nn, newa = findp(n, lasta); print1(", ", newa); lasta = newa;); } \\ Michel Marcus, Sep 20 2019