A327582 a(n) = (17 * 7^(2*n+1) + 1)/24. Sequence related to the properties of the partition function A000041 modulo a power of 7.
5, 243, 11905, 583343, 28583805, 1400606443, 68629715705, 3362856069543, 164779947407605, 8074217422972643, 395636653725659505, 19386196032557315743, 949923605595308471405, 46546256674170115098843, 2280766577034335639843305, 111757562274682446352321943
Offset: 0
Examples
For m=1 and n=0, p(7^(2*1+1)*0 + a(1)) = p(243) = 133978259344888 = 7^2 * 2734250190712. For m=1 and n=1, p(7^(2*1+1)*1 + a(1)) = p(586) = 224282898599046831034631 = 7^2 * 4577202012225445531319.
Links
- Colin Barker, Table of n, a(n) for n = 0..500
- G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128; see pp. 118 and 124.
- Eric Weisstein's World of Mathematics, Partition Function P Congruences.
- Wikipedia, G. N. Watson.
- Index entries for linear recurrences with constant coefficients, signature (50,-49).
Programs
-
PARI
a(n) = (17 * 7^(2*n+1) + 1)/24; \\ Michel Marcus, Sep 25 2019
-
PARI
Vec((5 - 7*x) / ((1 - x)*(1 - 49*x)) + O(x^15)) \\ Colin Barker, Sep 27 2019
Formula
From Colin Barker, Sep 27 2019: (Start)
G.f.: (5 - 7*x) / ((1 - x)*(1 - 49*x)).
a(n) = 50*a(n-1) - 49*a(n-2) for n>1.
(End)
Comments