A327607 Number of parts in all twice partitions of n where the first partition is strict.
0, 1, 3, 11, 21, 58, 128, 276, 516, 1169, 2227, 4324, 8335, 15574, 29116, 55048, 97698, 176291, 323277, 563453, 1005089, 1770789, 3076868, 5293907, 9184885, 15668638, 26751095, 45517048, 76882920, 128738414, 217219751, 360525590, 599158211, 995474365
Offset: 0
Keywords
Examples
a(3) = 11 = 1+2+3+2+3 counting the parts in 3, 21, 111, 2|1, 11|1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4000
Programs
-
Maple
g:= proc(n) option remember; (p-> [p(n), add(p(n-j)* numtheory[tau](j), j=1..n)])(combinat[numbpart]) end: b:= proc(n, i) option remember; `if`(i*(i+1)/2
(f-> f+[0, f[1]* h[2]/h[1]])(b(n-i, min(n-i, i-1))*h[1]))(g(i)))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..37); -
Mathematica
g[n_] := g[n] = {PartitionsP[n], Sum[PartitionsP[n - j] DivisorSigma[0, j], {j, 1, n}]}; b[n_, i_] := b[n, i] = If[i(i+1)/2 < n, 0, If[n == 0, {1, 0}, Module[{h, f}, h = g[i]; f = b[n - i, Min[n - i, i - 1]] h[[1]]; b[n, i - 1] + f + {0, f[[1]] h[[2]] / h[[1]]}]]]; a[n_] := b[n, n][[2]]; a /@ Range[0, 37] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)