cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327607 Number of parts in all twice partitions of n where the first partition is strict.

Original entry on oeis.org

0, 1, 3, 11, 21, 58, 128, 276, 516, 1169, 2227, 4324, 8335, 15574, 29116, 55048, 97698, 176291, 323277, 563453, 1005089, 1770789, 3076868, 5293907, 9184885, 15668638, 26751095, 45517048, 76882920, 128738414, 217219751, 360525590, 599158211, 995474365
Offset: 0

Views

Author

Alois P. Heinz, Sep 18 2019

Keywords

Examples

			a(3) = 11 = 1+2+3+2+3 counting the parts in 3, 21, 111, 2|1, 11|1.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; (p-> [p(n), add(p(n-j)*
          numtheory[tau](j), j=1..n)])(combinat[numbpart])
        end:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 (f-> f+[0, f[1]*
           h[2]/h[1]])(b(n-i, min(n-i, i-1))*h[1]))(g(i))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..37);
  • Mathematica
    g[n_] := g[n] = {PartitionsP[n], Sum[PartitionsP[n - j] DivisorSigma[0, j], {j, 1, n}]};
    b[n_, i_] := b[n, i] = If[i(i+1)/2 < n, 0, If[n == 0, {1, 0}, Module[{h, f}, h = g[i]; f = b[n - i, Min[n - i, i - 1]] h[[1]]; b[n, i - 1] + f + {0, f[[1]] h[[2]] / h[[1]]}]]];
    a[n_] := b[n, n][[2]];
    a /@ Range[0, 37] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)