cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A271619 Twice partitioned numbers where the first partition is strict.

Original entry on oeis.org

1, 1, 2, 5, 8, 18, 34, 65, 109, 223, 386, 698, 1241, 2180, 3804, 6788, 11390, 19572, 34063, 56826, 96748, 163511, 272898, 452155, 755928, 1244732, 2054710, 3382147, 5534696, 8992209, 14733292, 23763685, 38430071, 62139578, 99735806, 160183001, 256682598
Offset: 0

Views

Author

Gus Wiseman, Apr 10 2016

Keywords

Comments

Number of sequences of integer partitions of the parts of some strict partition of n.
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1, g(n) = -A000041(n). - Seiichi Manyama, Nov 15 2018

Examples

			a(6)=34: {(6);(5)(1),(51);(4)(2),(42);(4)(11),(41)(1),(411);(33);(3)(2)(1),(31)(2),(32)(1),(321);(3)(11)(1),(31)(11),(311)(1),(3111);(22)(2),(222);(21)(2)(1),(22)(11),(211)(2),(221)(1),(2211);(21)(11)(1),(111)(2)(1),(211)(11),(1111)(2),(2111)(1),(21111);(111)(11)(1),(1111)(11),(11111)(1),(111111)}
		

Crossrefs

Cf. A000009, A000041, A063834 (twice partitioned numbers), A270995, A279785, A327552, A327607.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, 1, b(n, i-1) +`if`(i>n, 0,
           b(n-i, i-1)*combinat[numbpart](i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 11 2016
  • Mathematica
    With[{n = 50}, CoefficientList[Series[Product[(1 + PartitionsP[i] x^i), {i, 1, n}], {x, 0, n}], x]]

Formula

G.f.: Product_{i>=1} (1 + A000041(i) * x^i).

A327605 Number of parts in all twice partitions of n where both partitions are strict.

Original entry on oeis.org

0, 1, 1, 5, 8, 15, 28, 49, 86, 156, 259, 412, 679, 1086, 1753, 2826, 4400, 6751, 10703, 16250, 24757, 38047, 57459, 85861, 129329, 192660, 286177, 424358, 624510, 915105, 1347787, 1961152, 2847145, 4144089, 5988205, 8638077, 12439833, 17837767, 25536016
Offset: 0

Views

Author

Alois P. Heinz, Sep 18 2019

Keywords

Examples

			a(3) = 5 = 1+2+2 counting the parts in 3, 21, 2|1.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(i*(i+1)/2 f+
           [0, f[1]])(g(n-i, min(n-i, i-1)))))
        end:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 (f-> f+[0, f[1]*
           h[2]/h[1]])(b(n-i, min(n-i, i-1))*h[1]))(g(i$2))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..42);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, Return@{1, 0}]; If[k == 0, Return@{1, 1}]; If[i (i + 1)/2 < n, Return@{0, 0}]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
    a[n_] := b[n, n, 2][[2]];
    a /@ Range[0, 42] (* Jean-François Alcover, Jun 03 2020, after Alois P. Heinz in A327622 *)

A327594 Number of parts in all twice partitions of n.

Original entry on oeis.org

0, 1, 5, 14, 44, 100, 274, 581, 1417, 2978, 6660, 13510, 29479, 58087, 120478, 236850, 476913, 916940, 1812498, 3437043, 6657656, 12512273, 23780682, 44194499, 83117200, 152837210, 283431014, 517571202, 949844843, 1719175176, 3127751062, 5618969956, 10133425489
Offset: 0

Views

Author

Alois P. Heinz, Sep 18 2019

Keywords

Examples

			a(2) = 5 = 1+2+2 counting the parts in 2, 11, 1|1.
a(3) = 14 = 1+2+3+2+3+3: 3, 21, 111, 2|1, 11|1, 1|1|1.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; (p-> [p(n), add(p(n-j)*
          numtheory[tau](j), j=1..n)])(combinat[numbpart])
        end:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<2, 0, b(n, i-1)) +(h-> (f-> f +[0, f[1]*
           h[2]/h[1]])(b(n-i, min(n-i, i))*h[1]))(g(i)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..37);
    # second Maple program:
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
         `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
             (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
            b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
        end:
    a:= n-> b(n$2, 2)[2]:
    seq(a(n), n=0..37);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
    a[n_] := b[n, n, 2][[2]];
    a /@ Range[0, 37] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)

A327608 Number of parts in all twice partitions of n where the second partition is strict.

Original entry on oeis.org

0, 1, 3, 8, 17, 34, 74, 134, 254, 470, 842, 1463, 2620, 4416, 7545, 12749, 21244, 34913, 57868, 93583, 151963, 244602, 391206, 620888, 987344, 1550754, 2435087, 3804354, 5920225, 9162852, 14179754, 21785387, 33436490, 51121430, 77935525, 118384318, 179617794
Offset: 0

Views

Author

Alois P. Heinz, Sep 18 2019

Keywords

Examples

			a(3) = 8 = 1+2+2+3 counting the parts in 3, 21, 2|1, 1|1|1.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(i*(i+1)/2 f+
           [0, f[1]])(g(n-i, min(n-i, i-1)))))
        end:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<2, 0, b(n, i-1)) +(h-> (f-> f +[0, f[1]*
           h[2]/h[1]])(b(n-i, min(n-i, i))*h[1]))(g(i$2)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..37);
  • Mathematica
    g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, 0, If[n == 0, {1, 0}, g[n, i - 1] + Function[f, f + {0, f[[1]]}][g[n - i, Min[n - i, i - 1]]]]];
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 2, 0, b[n, i - 1]] + Module[{h, f}, h = g[i, i]; f = b[n - i, Min[n - i, i]] h[[1]]; f + {0, f[[1]] h[[2]]/h[[1]]}]];
    a[n_] := b[n, n][[2]];
    a /@ Range[0, 37] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)

A327552 Number of partitions in all twice partitions of n where the first partition is strict.

Original entry on oeis.org

0, 1, 2, 7, 11, 29, 63, 125, 225, 489, 930, 1704, 3260, 5859, 10868, 20026, 35062, 61660, 111789, 191119, 337432, 585847, 1003876, 1705380, 2921394, 4930357, 8311554, 14013583, 23435178, 38849655, 64847870, 106784912, 175699558, 289676875, 472418418, 772944773
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2019

Keywords

Examples

			a(3) = 7 = 1+1+1+2+2 counting the partitions in 3, 21, 111, 2|1, 11|1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2p+[0, p[1]])(
          combinat[numbpart](i)*b(n-i, min(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..36);
  • Mathematica
    b[n_, i_] := b[n, i] = If[i(i+1)/2Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)
Showing 1-5 of 5 results.