A270995
Expansion of Product_{k>=1} 1/(1 - A000009(k)*x^k).
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 23, 37, 64, 108, 180, 290, 488, 772, 1251, 2001, 3180, 4982, 7913, 12261, 19162, 29669, 45804, 70187, 108029, 164276, 250267, 379439, 574067, 864044, 1302169, 1949050, 2917900, 4352796, 6481627, 9620256, 14274080, 21090608, 31142909
Offset: 0
a(6)=23: {(6), (5)(1), (51), (4)(2), (42), (4)(1)(1), (41)(1), (3)(3), (3)(2)(1), (3)(21), (32)(1), (31)(2), (21)(3), (321), (3)(1)(1)(1), (31)(1)(1), (2)(2)(2), (2)(2)(1)(1), (21)(2)(1), (21)(21), (2)(1)(1)(1)(1), (21)(1)(1)(1), (1)(1)(1)(1)(1)(1)}.
For compositions instead of partitions we have
A304969, non-strict
A055887.
A072233 counts partitions by sum and length.
-
nmax = 50; CoefficientList[Series[Product[1/(1-PartitionsQ[k]*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A327605
Number of parts in all twice partitions of n where both partitions are strict.
Original entry on oeis.org
0, 1, 1, 5, 8, 15, 28, 49, 86, 156, 259, 412, 679, 1086, 1753, 2826, 4400, 6751, 10703, 16250, 24757, 38047, 57459, 85861, 129329, 192660, 286177, 424358, 624510, 915105, 1347787, 1961152, 2847145, 4144089, 5988205, 8638077, 12439833, 17837767, 25536016
Offset: 0
a(3) = 5 = 1+2+2 counting the parts in 3, 21, 2|1.
-
g:= proc(n, i) option remember; `if`(i*(i+1)/2 f+
[0, f[1]])(g(n-i, min(n-i, i-1)))))
end:
b:= proc(n, i) option remember; `if`(i*(i+1)/2 (f-> f+[0, f[1]*
h[2]/h[1]])(b(n-i, min(n-i, i-1))*h[1]))(g(i$2))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..42);
-
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, Return@{1, 0}]; If[k == 0, Return@{1, 1}]; If[i (i + 1)/2 < n, Return@{0, 0}]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
a[n_] := b[n, n, 2][[2]];
a /@ Range[0, 42] (* Jean-François Alcover, Jun 03 2020, after Alois P. Heinz in A327622 *)
A327594
Number of parts in all twice partitions of n.
Original entry on oeis.org
0, 1, 5, 14, 44, 100, 274, 581, 1417, 2978, 6660, 13510, 29479, 58087, 120478, 236850, 476913, 916940, 1812498, 3437043, 6657656, 12512273, 23780682, 44194499, 83117200, 152837210, 283431014, 517571202, 949844843, 1719175176, 3127751062, 5618969956, 10133425489
Offset: 0
a(2) = 5 = 1+2+2 counting the parts in 2, 11, 1|1.
a(3) = 14 = 1+2+3+2+3+3: 3, 21, 111, 2|1, 11|1, 1|1|1.
-
g:= proc(n) option remember; (p-> [p(n), add(p(n-j)*
numtheory[tau](j), j=1..n)])(combinat[numbpart])
end:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<2, 0, b(n, i-1)) +(h-> (f-> f +[0, f[1]*
h[2]/h[1]])(b(n-i, min(n-i, i))*h[1]))(g(i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..37);
# second Maple program:
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
a:= n-> b(n$2, 2)[2]:
seq(a(n), n=0..37);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
a[n_] := b[n, n, 2][[2]];
a /@ Range[0, 37] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)
A327607
Number of parts in all twice partitions of n where the first partition is strict.
Original entry on oeis.org
0, 1, 3, 11, 21, 58, 128, 276, 516, 1169, 2227, 4324, 8335, 15574, 29116, 55048, 97698, 176291, 323277, 563453, 1005089, 1770789, 3076868, 5293907, 9184885, 15668638, 26751095, 45517048, 76882920, 128738414, 217219751, 360525590, 599158211, 995474365
Offset: 0
a(3) = 11 = 1+2+3+2+3 counting the parts in 3, 21, 111, 2|1, 11|1.
-
g:= proc(n) option remember; (p-> [p(n), add(p(n-j)*
numtheory[tau](j), j=1..n)])(combinat[numbpart])
end:
b:= proc(n, i) option remember; `if`(i*(i+1)/2 (f-> f+[0, f[1]*
h[2]/h[1]])(b(n-i, min(n-i, i-1))*h[1]))(g(i))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..37);
-
g[n_] := g[n] = {PartitionsP[n], Sum[PartitionsP[n - j] DivisorSigma[0, j], {j, 1, n}]};
b[n_, i_] := b[n, i] = If[i(i+1)/2 < n, 0, If[n == 0, {1, 0}, Module[{h, f}, h = g[i]; f = b[n - i, Min[n - i, i - 1]] h[[1]]; b[n, i - 1] + f + {0, f[[1]] h[[2]] / h[[1]]}]]];
a[n_] := b[n, n][[2]];
a /@ Range[0, 37] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)
A327554
Number of partitions in all twice partitions of n where the second partition is strict.
Original entry on oeis.org
0, 1, 3, 7, 15, 29, 60, 108, 201, 364, 643, 1106, 1944, 3253, 5493, 9183, 15161, 24727, 40559, 65173, 104963, 167747, 266452, 420329, 663658, 1036765, 1618221, 2514169, 3891121, 5992868, 9224213, 14107699, 21548428, 32798065, 49779331, 75301296, 113757367
Offset: 0
a(3) = 7 = 1+1+2+3 counting the partitions in 3, 21, 2|1, 1|1|1.
-
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
b(n, i-1) +(p-> p+[0, p[1]])(g(i)*b(n-i, min(n-i, i)))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..42);
-
g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j] Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, b[n, i - 1] + Function[p, p + {0, p[[1]]}][g[i] b[n - i, Min[n - i, i]]]]];
a[n_] := b[n, n][[2]];
a /@ Range[0, 42] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
Showing 1-5 of 5 results.
Comments