A063834
Twice partitioned numbers: the number of ways a number can be partitioned into not necessarily different parts and each part is again so partitioned.
Original entry on oeis.org
1, 1, 3, 6, 15, 28, 66, 122, 266, 503, 1027, 1913, 3874, 7099, 13799, 25501, 48508, 88295, 165942, 299649, 554545, 997281, 1817984, 3245430, 5875438, 10410768, 18635587, 32885735, 58399350, 102381103, 180634057, 314957425, 551857780, 958031826, 1667918758
Offset: 0
G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + 266*x^8 + ...
If n=6, a possible first partitioning is (3+3), resulting in the following second partitionings: ((3),(3)), ((3),(2+1)), ((3),(1+1+1)), ((2+1),(3)), ((2+1),(2+1)), ((2+1),(1+1+1)), ((1+1+1),(3)), ((1+1+1),(2+1)), ((1+1+1),(1+1+1)).
A001970 counts multiset partitions of integer partitions.
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1)+`if`(i>n, 0, numbpart(i)*b(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Nov 26 2015
-
Table[Plus @@ Apply[Times, IntegerPartitions[i] /. i_Integer :> PartitionsP[i], 2], {i, 36}]
(* second program: *)
b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i > n, 0, PartitionsP[i]*b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
-
{a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 19 2016 */
A001970
Functional determinants; partitions of partitions; Euler transform applied twice to all 1's sequence.
Original entry on oeis.org
1, 1, 3, 6, 14, 27, 58, 111, 223, 424, 817, 1527, 2870, 5279, 9710, 17622, 31877, 57100, 101887, 180406, 318106, 557453, 972796, 1688797, 2920123, 5026410, 8619551, 14722230, 25057499, 42494975, 71832114, 121024876, 203286806, 340435588, 568496753, 946695386
Offset: 0
G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + ...
a(3) = 6 because we have (111) = (111) = (11)(1) = (1)(1)(1), (12) = (12) = (1)(2), (3) = (3).
The a(4)=14 multiset partitions whose total sum of parts is 4 are:
((4)),
((13)), ((1)(3)),
((22)), ((2)(2)),
((112)), ((1)(12)), ((2)(11)), ((1)(1)(2)),
((1111)), ((1)(111)), ((11)(11)), ((1)(1)(11)), ((1)(1)(1)(1)). - _Gus Wiseman_, Dec 19 2016
- A. Cayley, Recherches sur les matrices dont les termes sont des fonctions linéaires d'une seule indéterminée, J. Reine angew. Math., 50 (1855), 313-317; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, p. 219.
- V. A. Liskovets, Counting rooted initially connected directed graphs. Vesci Akad. Nauk. BSSR, ser. fiz.-mat., No 5, 23-32 (1969), MR44 #3927.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. J. Sylvester, An Enumeration of the Contacts of Lines and Surfaces of the Second Order, Phil. Mag. 1 (1851), 119-140. Reprinted in Collected Papers, Vol. 1. See p. 239, where one finds a(n)-2, but with errors.
- J. J. Sylvester, Note on the 'Enumeration of the Contacts of Lines and Surfaces of the Second Order', Phil. Mag., Vol. VII (1854), pp. 331-334. Reprinted in Collected Papers, Vol. 2, pp. 30-33.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..5000 (first 500 terms from T. D. Noe)
- Pieter Belmans, Segre symbols, 2016.
- Philip Boalch, Counting the fission trees and nonabelian Hodge graphs, arXiv:2410.23358 [math.AG], 2024. See pp. 10, 16.
- P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 148
- R. Kaneiwa, An asymptotic formula for Cayley's double partition function p(2; n), Tokyo J. Math. 2, 137-158 (1979).
- L. Kaylor and D. Offner, Counting matrices over a finite field with all eigenvalues in the field, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645. [DOI]
- M. Kozek, F. Luca, P. Pollack, and C. Pomerance, Harmonious pairs, 2014.
- M. Kozek, F. Luca, P. Pollack, and C. Pomerance, Harmonious numbers, IJNT, to appear.
- XiKun Li, JunLi Li, Bin Liu and CongFeng Qiao, The parametric symmetry and numbers of the entangled class of 2 × M × N system, Science China Physics, Mechanics & Astronomy, Volume 54, Number 8, 1471-1475, DOI: 10.1007/s11433-011-4395-9.
- Jessie Pitsillides, Segre Characteristic Equivalence, arXiv:2506.12065 [math.GM], 2025.
- Paul Pollack and Carl Pomerance, Some problems of Erdős on the sum-of-divisors function, For Richard Guy on his 99th birthday: May his sequence be unbounded, Trans. Amer. Math. Soc. Ser. B, Vol. 3 (2016), pp. 1-26; Errata.
- N. J. A. Sloane, Transforms.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
- J. J. Sylvester, The collected mathematical papers of James Joseph Sylvester, vol. 2, vol. 3, vol. 4.
- Index entries for sequences related to rooted trees
Related to
A001383 via generating function.
The multiplicative version (factorizations) is
A050336.
The ordered version (sequences of partitions) is
A055887.
-
Following Vladeta Jovovic:
a001970 n = a001970_list !! (n-1)
a001970_list = 1 : f 1 [1] where
f x ys = y : f (x + 1) (y : ys) where
y = sum (zipWith (*) ys a061259_list) `div` x
-- Reinhard Zumkeller, Oct 31 2015
-
with(combstruct); SetSetSetU := [T, {T=Set(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},unlabeled];
# second Maple program:
with(numtheory): with(combinat):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
numbpart(d), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Dec 19 2016
-
m = 32; f[x_] = Product[1/(1-x^k)^PartitionsP[k], {k, 1, m}]; CoefficientList[ Series[f[x], {x, 0, m-1}], x] (* Jean-François Alcover, Jul 19 2011, after g.f. *)
-
{a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k + x * O(x^n)), n))}; /* Michael Somos, Dec 20 2016 */
-
from sympy.core.cache import cacheit
from sympy import npartitions, divisors
@cacheit
def a(n): return 1 if n == 0 else sum([sum([d*npartitions(d) for d in divisors(j)])*a(n - j) for j in range(1, n + 1)]) / n
[a(n) for n in range(51)] # Indranil Ghosh, Aug 19 2017, after Maple code
# (Sage) # uses[EulerTransform from A166861]
b = BinaryRecurrenceSequence(0, 1, 1)
a = EulerTransform(EulerTransform(b))
print([a(n) for n in range(36)]) # Peter Luschny, Nov 17 2022
A270995
Expansion of Product_{k>=1} 1/(1 - A000009(k)*x^k).
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 23, 37, 64, 108, 180, 290, 488, 772, 1251, 2001, 3180, 4982, 7913, 12261, 19162, 29669, 45804, 70187, 108029, 164276, 250267, 379439, 574067, 864044, 1302169, 1949050, 2917900, 4352796, 6481627, 9620256, 14274080, 21090608, 31142909
Offset: 0
a(6)=23: {(6), (5)(1), (51), (4)(2), (42), (4)(1)(1), (41)(1), (3)(3), (3)(2)(1), (3)(21), (32)(1), (31)(2), (21)(3), (321), (3)(1)(1)(1), (31)(1)(1), (2)(2)(2), (2)(2)(1)(1), (21)(2)(1), (21)(21), (2)(1)(1)(1)(1), (21)(1)(1)(1), (1)(1)(1)(1)(1)(1)}.
For compositions instead of partitions we have
A304969, non-strict
A055887.
A072233 counts partitions by sum and length.
-
nmax = 50; CoefficientList[Series[Product[1/(1-PartitionsQ[k]*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A273873
Number of strict trees of weight n.
Original entry on oeis.org
1, 1, 2, 3, 6, 12, 28, 65, 166, 412, 1076, 2806, 7524, 20020, 54744, 148417, 410078, 1126732, 3144500, 8728570, 24555900, 68713420, 194469616, 548088278, 1559301428, 4418131108, 12628267512, 35957541462, 103150588492, 294924202032, 848878072440, 2435729999665
Offset: 1
a(6) = 12: {6, (51), (42), ((41)1), (321), ((31)2), ((32)1), (((31)1)1), ((21)21), (((21)1)2), (((21)2)1), ((((21)1)1)1)}.
-
b:= proc(n, i) option remember; `if`(i*(i+1)/2 1+b(n, n-1):
seq(a(n), n=1..35); # Alois P. Heinz, Jun 02 2016
-
STE[n_Integer?Positive]:=STE[n]=1+Plus@@Map[Function[ptn,Times@@STE/@ptn],Select[IntegerPartitions[n],And[Length[#]>1,UnsameQ@@#]&]];
Array[STE,30]
(* Second program: *)
b[n_, i_] := b[n, i] = If[i(i + 1)/2 < n, 0,
If[n == 0, 1, b[n, i - 1] + b[n - i, Min[n - i, i - 1]] a[i]]];
a[n_] := If[n == 0, 1, 1 + b[n, n - 1]];
a /@ Range[35] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
-
seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(prod(k=1, n-1, 1 + v[k]*x^k + O(x*x^n)), n)); v} \\ Andrew Howroyd, Aug 26 2018
A305551
Number of partitions of partitions of n where all partitions have the same sum.
Original entry on oeis.org
1, 1, 3, 4, 9, 8, 22, 16, 43, 41, 77, 57, 201, 102, 264, 282, 564, 298, 1175, 491, 1878, 1509, 2611, 1256, 7872, 2421, 7602, 8026, 16304, 4566, 38434, 6843, 48308, 41078, 56582, 28228, 221115, 21638, 146331, 208142, 453017, 44584, 844773, 63262, 1034193, 1296708
Offset: 0
The a(4) = 9 partitions of partitions where all partitions have the same sum:
(4), (31), (22), (211), (1111),
(2)(2), (2)(11), (11)(11),
(1)(1)(1)(1).
Cf.
A000005,
A001970,
A001315,
A007716,
A038041,
A055887,
A063834,
A271619,
A289078,
A298422,
A306017.
-
Table[Sum[Binomial[PartitionsP[n/k]+k-1,k],{k,Divisors[n]}],{n,60}]
-
a(n)={if(n<1, n==0, sumdiv(n, d, binomial(numbpart(n/d) + d - 1, d)))} \\ Andrew Howroyd, Jun 22 2018
A279375
Number of set partitions of strict integer partitions of n that have distinct block-sums.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 9, 12, 16, 24, 39, 49, 70, 94, 127, 202, 247, 340, 450, 606, 772, 1169, 1407, 1920, 2454, 3267, 4089, 5469, 7293, 9222, 11884, 15291, 19417, 24890, 31469, 39662, 52619, 64764, 82502, 103576, 131169, 162726, 206015, 254233, 318464, 406262, 499210, 620593, 773673, 957073, 1181593
Offset: 0
The a(6)=9 set partitions of strict integer partitions of 6 are: ((6)), ((51)), ((5)(1)), ((42)), ((4)(2)), ((321)), ((32)(1)), ((31)(2)), ((3)(2)(1)). The set partition ((3)(21)) is not counted because its blocks do not have distinct sums.
-
nn=20;sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Total[Length[Select[sps[Sort[#]],UnsameQ@@Total/@#&]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,nn}]
A279787
Twice-partitioned numbers where the first partition is constant.
Original entry on oeis.org
1, 1, 3, 4, 10, 8, 29, 16, 64, 58, 124, 57, 469, 102, 489, 763, 1597, 298, 3858, 491, 8942, 6355, 6187, 1256, 59076, 18766, 20830, 49694, 167078, 4566, 481186, 6843, 752128, 362907, 231592, 1597802, 5951007, 21638, 790404, 2655810, 25274798, 44584, 40898731
Offset: 0
The a(4)=10 twice-partitions are:
((4)), ((31)), ((22)), ((211)), ((1111)),
((2)(2)), ((2)(11)), ((11)(2)), ((11)(11)),
((1)(1)(1)(1)).
-
with(numtheory): with(combinat):
a:= proc(n) option remember; `if`(n=0, 1,
add(numbpart(n/d)^d, d=divisors(n)))
end:
seq(a(n), n=0..70); # Alois P. Heinz, Dec 20 2016
-
nn=20;Table[DivisorSum[n,Power[PartitionsP[#],n/#]&],{n,nn}]
-
a(n)=if(n==0, 1, sumdiv(n, d, numbpart(n/d)^d)) \\ Andrew Howroyd, Aug 26 2018
A304961
Expansion of Product_{k>=1} (1 + 2^(k-1)*x^k).
Original entry on oeis.org
1, 1, 2, 6, 12, 32, 72, 176, 384, 960, 2112, 4992, 11264, 26112, 58368, 136192, 301056, 688128, 1548288, 3489792, 7766016, 17596416, 38993920, 87293952, 194248704, 432537600, 957349888, 2132803584, 4699717632, 10406068224, 23001563136, 50683969536, 111434268672, 245819768832
Offset: 0
From _Gus Wiseman_, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 12 splittings:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (1,1,2)
(1,1),(1) (1,2,1)
(2,1,1)
(3),(1)
(1,1,1,1)
(1,2),(1)
(2,1),(1)
(1,1,1),(1)
(End)
Starting with a reversed partition gives
A323583.
Starting with a partition gives
A336134.
Partitions of partitions are
A001970.
Splittings with equal sums are
A074854.
Splittings of compositions are
A133494.
Splittings with distinct sums are
A336127.
-
nmax = 33; CoefficientList[Series[Product[(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
N=40; x='x+O('x^N); Vec(prod(k=1, N, 1+2^(k-1)*x^k)) \\ Seiichi Manyama, Aug 22 2020
A358914
Number of twice-partitions of n into distinct strict partitions.
Original entry on oeis.org
1, 1, 1, 3, 4, 7, 13, 20, 32, 51, 83, 130, 206, 320, 496, 759, 1171, 1786, 2714, 4104, 6193, 9286, 13920, 20737, 30865, 45721, 67632, 99683, 146604, 214865, 314782, 459136, 668867, 972425, 1410458, 2040894, 2950839, 4253713, 6123836, 8801349, 12627079
Offset: 0
The a(1) = 1 through a(6) = 13 twice-partitions:
((1)) ((2)) ((3)) ((4)) ((5)) ((6))
((21)) ((31)) ((32)) ((42))
((2)(1)) ((3)(1)) ((41)) ((51))
((21)(1)) ((3)(2)) ((321))
((4)(1)) ((4)(2))
((21)(2)) ((5)(1))
((31)(1)) ((21)(3))
((31)(2))
((3)(21))
((32)(1))
((41)(1))
((3)(2)(1))
((21)(2)(1))
This is the distinct case of
A270995.
The case of strictly decreasing sums is
A279785.
The case of constant sums is
A279791.
For distinct instead of weakly decreasing sums we have
A336343.
This is the twice-partition case of
A358913.
A001970 counts multiset partitions of integer partitions.
A055887 counts sequences of partitions.
A330462 counts set systems by total sum and length.
A358830 counts twice-partitions with distinct lengths.
Cf.
A000009,
A000219,
A075900,
A271619,
A296122,
A304969,
A321449,
A336342,
A358901,
A358906,
A358907.
-
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
Table[Length[Select[twiptn[n],UnsameQ@@#&&And@@UnsameQ@@@#&]],{n,0,10}]
-
seq(n,k)={my(u=Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))-1)); Vec(prod(k=1, n, my(c=u[k]); sum(j=0, min(c,n\k), x^(j*k)*c!/(c-j)!, O(x*x^n))))} \\ Andrew Howroyd, Dec 31 2022
A358836
Number of multiset partitions of integer partitions of n with all distinct block sizes.
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 28, 51, 92, 164, 289, 504, 871, 1493, 2539, 4290, 7201, 12017, 19939, 32911, 54044, 88330, 143709, 232817, 375640, 603755, 966816, 1542776, 2453536, 3889338, 6146126, 9683279, 15211881, 23830271, 37230720, 58015116, 90174847, 139820368, 216286593
Offset: 0
The a(1) = 1 through a(5) = 15 multiset partitions:
{1} {2} {3} {4} {5}
{1,1} {1,2} {1,3} {1,4}
{1,1,1} {2,2} {2,3}
{1},{1,1} {1,1,2} {1,1,3}
{1,1,1,1} {1,2,2}
{1},{1,2} {1,1,1,2}
{2},{1,1} {1},{1,3}
{1},{1,1,1} {1},{2,2}
{2},{1,2}
{3},{1,1}
{1,1,1,1,1}
{1},{1,1,2}
{2},{1,1,1}
{1},{1,1,1,1}
{1,1},{1,1,1}
From _Gus Wiseman_, Aug 21 2024: (Start)
The a(0) = 1 through a(5) = 15 compositions whose leaders of maximal weakly decreasing runs are strictly increasing:
() (1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(211) (122)
(1111) (131)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
(End)
The version for set partitions is
A007837.
For sums instead of sizes we have
A271619.
For constant instead of distinct sizes we have
A319066.
These multiset partitions are ranked by
A326533.
For odd instead of distinct sizes we have
A356932.
The version for twice-partitions is
A358830.
The case of distinct sums also is
A358832.
Ranked by positions of strictly increasing rows in
A374740, opposite
A374629.
A001970 counts multiset partitions of integer partitions.
A335456 counts patterns matched by compositions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n],UnsameQ@@Length/@#&]],{n,0,10}]
(* second program *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Less@@First/@Split[#,GreaterEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 21 2024 *)
-
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, 1 + polcoef(g, k, y) + O(x*x^n)))} \\ Andrew Howroyd, Dec 31 2022
Showing 1-10 of 56 results.
Comments