cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327618 Number A(n,k) of parts in all k-times partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 6, 1, 0, 1, 7, 14, 12, 1, 0, 1, 9, 25, 44, 20, 1, 0, 1, 11, 39, 109, 100, 35, 1, 0, 1, 13, 56, 219, 315, 274, 54, 1, 0, 1, 15, 76, 386, 769, 1179, 581, 86, 1, 0, 1, 17, 99, 622, 1596, 3643, 3234, 1417, 128, 1, 0, 1, 19, 125, 939, 2960, 9135, 12336, 10789, 2978, 192, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 19 2019

Keywords

Comments

Row n is binomial transform of the n-th row of triangle A327631.

Examples

			A(2,2) = 5 = 1+2+2 counting the parts in 2, 11, 1|1.
Square array A(n,k) begins:
  0,  0,   0,    0,     0,     0,     0,      0, ...
  1,  1,   1,    1,     1,     1,     1,      1, ...
  1,  3,   5,    7,     9,    11,    13,     15, ...
  1,  6,  14,   25,    39,    56,    76,     99, ...
  1, 12,  44,  109,   219,   386,   622,    939, ...
  1, 20, 100,  315,   769,  1596,  2960,   5055, ...
  1, 35, 274, 1179,  3643,  9135, 19844,  38823, ...
  1, 54, 581, 3234, 12336, 36911, 93302, 208377, ...
		

Crossrefs

Columns k=0-3 give: A057427, A006128, A327594, A327627.
Rows n=0-3 give: A000004, A000012, A005408, A095794(k+1).
Main diagonal gives A327619.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
         `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
             (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
            b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
        end:
    A:= (n, k)-> b(n$2, k)[2]:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
    A[n_, k_] := b[n, n, k][[2]];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..k} binomial(k,i) * A327631(n,i).