A327618 Number A(n,k) of parts in all k-times partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 6, 1, 0, 1, 7, 14, 12, 1, 0, 1, 9, 25, 44, 20, 1, 0, 1, 11, 39, 109, 100, 35, 1, 0, 1, 13, 56, 219, 315, 274, 54, 1, 0, 1, 15, 76, 386, 769, 1179, 581, 86, 1, 0, 1, 17, 99, 622, 1596, 3643, 3234, 1417, 128, 1, 0, 1, 19, 125, 939, 2960, 9135, 12336, 10789, 2978, 192, 1
Offset: 0
Examples
A(2,2) = 5 = 1+2+2 counting the parts in 2, 11, 1|1. Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 3, 5, 7, 9, 11, 13, 15, ... 1, 6, 14, 25, 39, 56, 76, 99, ... 1, 12, 44, 109, 219, 386, 622, 939, ... 1, 20, 100, 315, 769, 1596, 2960, 5055, ... 1, 35, 274, 1179, 3643, 9135, 19844, 38823, ... 1, 54, 581, 3234, 12336, 36911, 93302, 208377, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+ (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]* b(n-i, min(n-i, i), k)))(b(i$2, k-1)))) end: A:= (n, k)-> b(n$2, k)[2]: seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]]; A[n_, k_] := b[n, n, k][[2]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
Formula
A(n,k) = Sum_{i=0..k} binomial(k,i) * A327631(n,i).
Comments