A327622 Number A(n,k) of parts in all k-times partitions of n into distinct parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 5, 3, 1, 0, 1, 1, 7, 8, 5, 1, 0, 1, 1, 9, 16, 15, 8, 1, 0, 1, 1, 11, 27, 35, 28, 10, 1, 0, 1, 1, 13, 41, 69, 73, 49, 13, 1, 0, 1, 1, 15, 58, 121, 160, 170, 86, 18, 1, 0, 1, 1, 17, 78, 195, 311, 460, 357, 156, 25, 1
Offset: 0
Examples
Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 3, 5, 7, 9, 11, 13, 15, 17, ... 1, 3, 8, 16, 27, 41, 58, 78, 101, ... 1, 5, 15, 35, 69, 121, 195, 295, 425, ... 1, 8, 28, 73, 160, 311, 553, 918, 1443, ... 1, 10, 49, 170, 460, 1047, 2106, 3865, 6611, ... 1, 13, 86, 357, 1119, 2893, 6507, 13182, 24625, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(k=0, [1, 1], `if`(i*(i+1)/2
(f-> f +[0, f[1]*h[2]/h[1]])(h[1]* b(n-i, min(n-i, i-1), k)))(b(i$2, k-1))))) end: A:= (n, k)-> b(n$2, k)[2]: seq(seq(A(n, d-n), n=0..d), d=0..14); -
Mathematica
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n==0, Return@{1, 0}]; If[k == 0, Return@{1, 1}]; If[i(i + 1)/2 < n, Return@{0, 0}]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]]; A[n_, k_] := b[n, n, k][[2]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2020, after Maple *)
Formula
A(n,k) = Sum_{i=0..k} binomial(k,i) * A327632(n,i).
Comments