cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327623 Number of parts in all n-times partitions of n into distinct parts.

Original entry on oeis.org

0, 1, 1, 7, 27, 121, 553, 3865, 24625, 202954, 1519540, 14193455, 132441998, 1381539355, 14096067555, 168745220585, 1961128020387, 25473872598375, 324797436024684, 4647784901400988, 65394584337577858, 1012005650484163962, 15285115573675197704
Offset: 0

Views

Author

Alois P. Heinz, Sep 19 2019

Keywords

Crossrefs

Main diagonal of A327622.
Cf. A327619.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
         `if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
            b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
        end:
    a:= n-> b(n$3)[2]:
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, Return[{1, 0}]]; If[k == 0, Return[{1, 1}]]; If[i (i + 1)/2 < n, Return[{0, 0}]]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
    a[n_] := b[n, n, n][[2]];
    a /@ Range[0, 23] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)