cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327624 Numbers m such that sigma(m)*phi(m) is a square but sigma(m)/phi(m) is not an integer.

Original entry on oeis.org

51, 170, 194, 364, 405, 477, 595, 679, 760, 780, 1023, 1455, 1463, 1496, 1512, 1524, 1674, 1715, 1731, 1796, 1804, 2058, 2080, 2651, 2754, 2945, 3192, 3410, 3534, 3567, 4381, 4420, 5044, 5130, 5670, 5770, 5784, 5797, 5822, 5859, 7600, 8245
Offset: 1

Views

Author

Bernard Schott, Sep 19 2019

Keywords

Comments

If sigma(m)/phi(m) is a square (m is in A293391) then sigma(m)*phi(m) is also a square (m is in A011257), but the converse is false (see 51 in the Example section). This sequence consists of these counterexamples.

Examples

			phi(51) = 32 and sigma(51) = 72, phi(51) * sigma(51) = 32 * 72 = 2304 = 48^2, but sigma(51)/phi(51) = 72/32 = 9/4 is not an integer.
		

Crossrefs

Equals A293391 \ A011257.
Cf. A020492 (sigma(m)/phi(m) is an integer).
Cf. A000010 (phi), A000203 (sigma).

Programs

  • Magma
    [k:k in [1..9000]| not IsIntegral(SumOfDivisors(k)/EulerPhi(k)) and IsSquare(EulerPhi(k)*SumOfDivisors(k)) ]; // Marius A. Burtea, Sep 19 2019
    
  • Maple
    filter:= v -> sigma(v)/phi(v) <> floor(sigma(v)/phi(v)) and issqr(sigma(v)*phi(v)) : select(filter, [$1..50000]);
  • Mathematica
    sQ[n_] := IntegerQ @ Sqrt[n]; aQ[n_] := sQ[(p = EulerPhi[n]) * (s = DivisorSigma[1, n])] && !sQ[s/p]; Select[Range[10^4], aQ] (* Amiram Eldar, Sep 19 2019 *)
  • PARI
    isok(m) = my(s=sigma(m), e=eulerphi(m)); issquare(s*e) && (s%e); \\ Michel Marcus, Sep 21 2019