cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327626 Expansion of Sum_{k>=1} x^(k^3) / (1 - x^(k^3))^2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 9, 10, 11, 12, 13, 14, 15, 18, 17, 18, 19, 20, 21, 22, 23, 27, 25, 26, 28, 28, 29, 30, 31, 36, 33, 34, 35, 36, 37, 38, 39, 45, 41, 42, 43, 44, 45, 46, 47, 54, 49, 50, 51, 52, 53, 56, 55, 63, 57, 58, 59, 60, 61, 62, 63, 73, 65, 66, 67, 68, 69, 70, 71, 81, 73, 74, 75
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 19 2019

Keywords

Comments

Sum of divisors d of n such that n/d is a cube.
Inverse Moebius transform of A078429.

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Sum[x^(k^3)/(1 - x^(k^3))^2, {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := DivisorSum[n, # &, IntegerQ[(n/#)^(1/3)] &]; Table[a[n], {n, 1, 75}]
    f[p_, e_] := (p^(e+3) - p^Mod[e, 3])/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 25 2025 *)
  • PARI
    A327626(n) = sumdiv(n,d,ispower(n/d,3)*d); \\ Antti Karttunen, Sep 19 2019

Formula

a(n) = Sum_{d|n} A078429(d).
a(n) = Sum_{d|n} A010057(n/d) * d. Dirichlet convolution of A000027 and A010057.
D.g.f.: zeta(s-1)*zeta(3s). - R. J. Mathar, Jun 05 2020
Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / 1890. - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = (p^(e+3) - p^(e mod 3))/(p^3-1). - Amiram Eldar, May 25 2025