cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327631 Number T(n,k) of parts in all proper k-times partitions of n; triangle T(n,k), n >= 1, 0 <= k <= n-1, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 5, 3, 1, 11, 21, 12, 1, 19, 61, 74, 30, 1, 34, 205, 461, 432, 144, 1, 53, 474, 1652, 2671, 2030, 588, 1, 85, 1246, 6795, 17487, 23133, 15262, 3984, 1, 127, 2723, 20966, 76264, 148134, 158452, 88194, 19980, 1, 191, 6277, 69812, 360114, 1002835, 1606434, 1483181, 734272, 151080
Offset: 1

Views

Author

Alois P. Heinz, Sep 19 2019

Keywords

Comments

In each step at least one part is replaced by the partition of itself into smaller parts. The parts are not resorted.
T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero.
Row n is the inverse binomial transform of the n-th row of array A327618.

Examples

			T(4,0) = 1:
  4    (1 part).
T(4,1) = 11 = 2 + 2 + 3 + 4:
  4-> 31    (2 parts)
  4-> 22    (2 parts)
  4-> 211   (3 parts)
  4-> 1111  (4 parts)
T(4,2) = 21 = 3 + 4 + 3 + 3 + 4 + 4:
  4-> 31 -> 211   (3 parts)
  4-> 31 -> 1111  (4 parts)
  4-> 22 -> 112   (3 parts)
  4-> 22 -> 211   (3 parts)
  4-> 22 -> 1111  (4 parts)
  4-> 211-> 1111  (4 parts)
T(4,3) = 12 = 4 + 4 + 4:
  4-> 31 -> 211 -> 1111  (4 parts)
  4-> 22 -> 112 -> 1111  (4 parts)
  4-> 22 -> 211 -> 1111  (4 parts)
Triangle T(n,k) begins:
  1;
  1,   2;
  1,   5,    3;
  1,  11,   21,    12;
  1,  19,   61,    74,    30;
  1,  34,  205,   461,   432,    144;
  1,  53,  474,  1652,  2671,   2030,    588;
  1,  85, 1246,  6795, 17487,  23133,  15262,  3984;
  1, 127, 2723, 20966, 76264, 148134, 158452, 88194, 19980;
  ...
		

Crossrefs

Columns k=0-2 give: A057427, -1+A006128(n), A328042.
Row sums give A327648.
T(n,floor(n/2)) gives A328041.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
         `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
             (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
            b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
        end:
    T:= (n, k)-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n-1), n=1..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]]*h[[2]]/ h[[1]]}][h[[1]]*b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
    T[n_, k_] := Sum[b[n, n, i][[2]]*(-1)^(k - i)*Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 1, 12}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Jan 07 2020, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k,i) * A327618(n,i).
T(n,n-1) = n * A327639(n,n-1) = n * A327643(n) for n >= 1.