A327631 Number T(n,k) of parts in all proper k-times partitions of n; triangle T(n,k), n >= 1, 0 <= k <= n-1, read by rows.
1, 1, 2, 1, 5, 3, 1, 11, 21, 12, 1, 19, 61, 74, 30, 1, 34, 205, 461, 432, 144, 1, 53, 474, 1652, 2671, 2030, 588, 1, 85, 1246, 6795, 17487, 23133, 15262, 3984, 1, 127, 2723, 20966, 76264, 148134, 158452, 88194, 19980, 1, 191, 6277, 69812, 360114, 1002835, 1606434, 1483181, 734272, 151080
Offset: 1
Examples
T(4,0) = 1: 4 (1 part). T(4,1) = 11 = 2 + 2 + 3 + 4: 4-> 31 (2 parts) 4-> 22 (2 parts) 4-> 211 (3 parts) 4-> 1111 (4 parts) T(4,2) = 21 = 3 + 4 + 3 + 3 + 4 + 4: 4-> 31 -> 211 (3 parts) 4-> 31 -> 1111 (4 parts) 4-> 22 -> 112 (3 parts) 4-> 22 -> 211 (3 parts) 4-> 22 -> 1111 (4 parts) 4-> 211-> 1111 (4 parts) T(4,3) = 12 = 4 + 4 + 4: 4-> 31 -> 211 -> 1111 (4 parts) 4-> 22 -> 112 -> 1111 (4 parts) 4-> 22 -> 211 -> 1111 (4 parts) Triangle T(n,k) begins: 1; 1, 2; 1, 5, 3; 1, 11, 21, 12; 1, 19, 61, 74, 30; 1, 34, 205, 461, 432, 144; 1, 53, 474, 1652, 2671, 2030, 588; 1, 85, 1246, 6795, 17487, 23133, 15262, 3984; 1, 127, 2723, 20966, 76264, 148134, 158452, 88194, 19980; ...
Links
- Alois P. Heinz, Rows n = 1..200, flattened
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+ (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]* b(n-i, min(n-i, i), k)))(b(i$2, k-1)))) end: T:= (n, k)-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n-1), n=1..12);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]]*h[[2]]/ h[[1]]}][h[[1]]*b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]]; T[n_, k_] := Sum[b[n, n, i][[2]]*(-1)^(k - i)*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 1, 12}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Jan 07 2020, after Alois P. Heinz *)
Comments