cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327632 Number T(n,k) of parts in all proper k-times partitions of n into distinct parts; triangle T(n,k), n >= 1, 0 <= k <= max(0,n-2), read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 4, 6, 4, 1, 7, 13, 12, 5, 1, 9, 30, 52, 35, 6, 1, 12, 61, 137, 156, 72, 7, 1, 17, 121, 384, 638, 548, 196, 8, 1, 24, 210, 880, 1983, 2442, 1543, 400, 9, 1, 29, 353, 2012, 6211, 10865, 10555, 5231, 1026, 10, 1, 39, 600, 4477, 17883, 40855, 54279, 40511, 15178, 2070, 11
Offset: 1

Views

Author

Alois P. Heinz, Sep 19 2019

Keywords

Comments

In each step at least one part is replaced by the partition of itself into smaller distinct parts. The parts are not resorted and the parts in the result are not necessarily distinct.
T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero.
Row n is the inverse binomial transform of the n-th row of array A327622.

Examples

			T(4,0) = 1:
  4    (1 part).
T(4,1) = 2:
  4-> 31    (2 parts)
T(4,2) = 3:
  4-> 31 -> 211   (3 parts)
Triangle T(n,k) begins:
  1;
  1;
  1,  2;
  1,  2,   3;
  1,  4,   6,    4;
  1,  7,  13,   12,    5;
  1,  9,  30,   52,   35,     6;
  1, 12,  61,  137,  156,    72,     7;
  1, 17, 121,  384,  638,   548,   196,    8;
  1, 24, 210,  880, 1983,  2442,  1543,  400,    9;
  1, 29, 353, 2012, 6211, 10865, 10555, 5231, 1026, 10;
  ...
		

Crossrefs

Columns k=0-2 give: A057427, -1+A015723(n), A327795.
Row sums give A327647.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
         `if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
            b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
        end:
    T:= (n, k)-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..max(0, n-2)), n=1..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i (i + 1)/2 < n, {0, 0}, b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][ b[i, i, k - 1]]]]]];
    T[n_, k_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
    Table[Table[T[n, k], {k, 0, Max[0, n - 2]}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k,i) * A327622(n,i).
T(n+1,n-1) = 1 for n >= 1.