A327632 Number T(n,k) of parts in all proper k-times partitions of n into distinct parts; triangle T(n,k), n >= 1, 0 <= k <= max(0,n-2), read by rows.
1, 1, 1, 2, 1, 2, 3, 1, 4, 6, 4, 1, 7, 13, 12, 5, 1, 9, 30, 52, 35, 6, 1, 12, 61, 137, 156, 72, 7, 1, 17, 121, 384, 638, 548, 196, 8, 1, 24, 210, 880, 1983, 2442, 1543, 400, 9, 1, 29, 353, 2012, 6211, 10865, 10555, 5231, 1026, 10, 1, 39, 600, 4477, 17883, 40855, 54279, 40511, 15178, 2070, 11
Offset: 1
Examples
T(4,0) = 1: 4 (1 part). T(4,1) = 2: 4-> 31 (2 parts) T(4,2) = 3: 4-> 31 -> 211 (3 parts) Triangle T(n,k) begins: 1; 1; 1, 2; 1, 2, 3; 1, 4, 6, 4; 1, 7, 13, 12, 5; 1, 9, 30, 52, 35, 6; 1, 12, 61, 137, 156, 72, 7; 1, 17, 121, 384, 638, 548, 196, 8; 1, 24, 210, 880, 1983, 2442, 1543, 400, 9; 1, 29, 353, 2012, 6211, 10865, 10555, 5231, 1026, 10; ...
Links
- Alois P. Heinz, Rows n = 1..200, flattened
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(k=0, [1, 1], `if`(i*(i+1)/2
(f-> f +[0, f[1]*h[2]/h[1]])(h[1]* b(n-i, min(n-i, i-1), k)))(b(i$2, k-1))))) end: T:= (n, k)-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..max(0, n-2)), n=1..14); -
Mathematica
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i (i + 1)/2 < n, {0, 0}, b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][ b[i, i, k - 1]]]]]]; T[n_, k_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, Max[0, n - 2]}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
Formula
T(n,k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k,i) * A327622(n,i).
T(n+1,n-1) = 1 for n >= 1.
Comments