cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327639 Number T(n,k) of proper k-times partitions of n; triangle T(n,k), n >= 0, 0 <= k <= max(0,n-1), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 15, 16, 6, 1, 10, 45, 88, 76, 24, 1, 14, 93, 282, 420, 302, 84, 1, 21, 223, 1052, 2489, 3112, 1970, 498, 1, 29, 444, 2950, 9865, 18123, 18618, 10046, 2220, 1, 41, 944, 9030, 42787, 112669, 173338, 155160, 74938, 15108
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2019

Keywords

Comments

In each step at least one part is replaced by the partition of itself into smaller parts. The parts are not resorted.
T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero.
Row n is the inverse binomial transform of the n-th row of array A323718.

Examples

			T(4,0) = 1:  4
T(4,1) = 4:     T(4,2) = 6:          T(4,3) = 3:
  4-> 31          4-> 31 -> 211        4-> 31 -> 211 -> 1111
  4-> 22          4-> 31 -> 1111       4-> 22 -> 112 -> 1111
  4-> 211         4-> 22 -> 112        4-> 22 -> 211 -> 1111
  4-> 1111        4-> 22 -> 211
                  4-> 22 -> 1111
                  4-> 211-> 1111
Triangle T(n,k) begins:
  1;
  1;
  1,  1;
  1,  2,   1;
  1,  4,   6,    3;
  1,  6,  15,   16,     6;
  1, 10,  45,   88,    76,     24;
  1, 14,  93,  282,   420,    302,     84;
  1, 21, 223, 1052,  2489,   3112,   1970,    498;
  1, 29, 444, 2950,  9865,  18123,  18618,  10046,  2220;
  1, 41, 944, 9030, 42787, 112669, 173338, 155160, 74938, 15108;
  ...
		

Crossrefs

Columns k=0-2 give A000012, A000065, A327769.
Row sums give A327644.
T(2n,n) gives A327645.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
          b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..max(0, n-1)), n=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]];
    T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 0, 12}, {k, 0, Max[0, n - 1] }] // Flatten (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k,i) * A323718(n,i).
T(n,n-1) = A327631(n,n-1)/n = A327643(n) for n >= 1.
Sum_{k=1..n-1} k * T(n,k) = A327646(n).
Sum_{k=0..max(0,n-1)} (-1)^k * T(n,k) = [n<2], where [] is an Iverson bracket.