cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327642 Number of partitions of n into divisors of n that are at most sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 4, 1, 5, 4, 6, 1, 19, 1, 8, 6, 25, 1, 37, 1, 36, 8, 12, 1, 169, 6, 14, 10, 64, 1, 247, 1, 81, 12, 18, 8, 1072, 1, 20, 14, 405, 1, 512, 1, 144, 82, 24, 1, 2825, 8, 146, 18, 196, 1, 1000, 12, 743, 20, 30, 1, 19858, 1, 32, 112, 969, 14, 1728, 1, 324, 24, 1105
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 20 2019

Keywords

Comments

a(n) > n if n is in A058080 Union {0}, and, a(n) <= n if n is in A007964; indeed, a(n) = n only for n = 1. - Bernard Schott, Sep 22 2019

Examples

			The divisors of 6 are 1, 2, 3, 6 and sqrt(6) = 2.449..., so the possible partitions are 1+1+1+1+1+1 = 1+1+1+1+2 = 1+1+2+2 = 2+2+2; thus a(6) = 4. - _Bernard Schott_, Sep 22 2019
		

Crossrefs

Programs

  • Magma
    [1] cat [#RestrictedPartitions(n,{d:d in Divisors(n)| d le Sqrt(n)}):n in [1..70]]; // Marius A. Burtea, Sep 20 2019
  • Maple
    f:= proc(n) local x, t, S;
        S:= 1;
        for t in numtheory:-divisors(n) do
          if t^2 <= n then
            S:= series(S/(1-x^t),x,n+1);
          fi
        od;
        coeff(S,x,n);
    end proc:
    map(f, [$0..100]); # Robert Israel, Sep 22 2019
  • Mathematica
    a[n_] := SeriesCoefficient[Product[1/(1 - Boole[d <= Sqrt[n]] x^d), {d, Divisors[n]}], {x, 0, n}]; Table[a[n], {n, 0, 70}]

Formula

a(n) = [x^n] Product_{d|n, d <= sqrt(n)} 1 / (1 - x^d).
a(p) = 1, where p is prime.
a(p*q) = q+1 if p <= q are primes. - Robert Israel, Sep 22 2019