A327642 Number of partitions of n into divisors of n that are at most sqrt(n).
1, 1, 1, 1, 3, 1, 4, 1, 5, 4, 6, 1, 19, 1, 8, 6, 25, 1, 37, 1, 36, 8, 12, 1, 169, 6, 14, 10, 64, 1, 247, 1, 81, 12, 18, 8, 1072, 1, 20, 14, 405, 1, 512, 1, 144, 82, 24, 1, 2825, 8, 146, 18, 196, 1, 1000, 12, 743, 20, 30, 1, 19858, 1, 32, 112, 969, 14, 1728, 1, 324, 24, 1105
Offset: 0
Examples
The divisors of 6 are 1, 2, 3, 6 and sqrt(6) = 2.449..., so the possible partitions are 1+1+1+1+1+1 = 1+1+1+1+2 = 1+1+2+2 = 2+2+2; thus a(6) = 4. - _Bernard Schott_, Sep 22 2019
Links
- David A. Corneth, Table of n, a(n) for n = 0..9999 (first 5001 terms from Robert Israel)
Programs
-
Magma
[1] cat [#RestrictedPartitions(n,{d:d in Divisors(n)| d le Sqrt(n)}):n in [1..70]]; // Marius A. Burtea, Sep 20 2019
-
Maple
f:= proc(n) local x, t, S; S:= 1; for t in numtheory:-divisors(n) do if t^2 <= n then S:= series(S/(1-x^t),x,n+1); fi od; coeff(S,x,n); end proc: map(f, [$0..100]); # Robert Israel, Sep 22 2019
-
Mathematica
a[n_] := SeriesCoefficient[Product[1/(1 - Boole[d <= Sqrt[n]] x^d), {d, Divisors[n]}], {x, 0, n}]; Table[a[n], {n, 0, 70}]
Formula
a(n) = [x^n] Product_{d|n, d <= sqrt(n)} 1 / (1 - x^d).
a(p) = 1, where p is prime.
a(p*q) = q+1 if p <= q are primes. - Robert Israel, Sep 22 2019
Comments