cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327645 Number of proper n-times partitions of 2n.

Original entry on oeis.org

1, 1, 6, 88, 2489, 112669, 8204101, 799422247, 109633217402, 19157475773052, 4260985739868007, 1161511740640164091, 388990633971649889649, 152369510393132343133762, 70914541309488196549283707, 38152280583855500772704976704, 23639325145221113389859164367779
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2019

Keywords

Comments

In each step at least one part is replaced by the partition of itself into smaller parts. The parts are not resorted.

Examples

			a(2) = 6: 4->31->211, 4->31->1111, 4->22->112, 4->22->211, 4->22->1111, 4->211->1111.
		

Crossrefs

Cf. A327639.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
          b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    a:= n-> add(b(2*n$2, i)*(-1)^(n-i)*binomial(n, i), i=0..n):
    seq(a(n), n=0..17);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]];
    a[n_] := Sum[b[2n, 2n, i] (-1)^(n - i) Binomial[n, i], {i, 0, n}];
    a /@ Range[0, 17] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)

Formula

a(n) = A327639(2n,n).