A327639 Number T(n,k) of proper k-times partitions of n; triangle T(n,k), n >= 0, 0 <= k <= max(0,n-1), read by rows.
1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 15, 16, 6, 1, 10, 45, 88, 76, 24, 1, 14, 93, 282, 420, 302, 84, 1, 21, 223, 1052, 2489, 3112, 1970, 498, 1, 29, 444, 2950, 9865, 18123, 18618, 10046, 2220, 1, 41, 944, 9030, 42787, 112669, 173338, 155160, 74938, 15108
Offset: 0
Examples
T(4,0) = 1: 4 T(4,1) = 4: T(4,2) = 6: T(4,3) = 3: 4-> 31 4-> 31 -> 211 4-> 31 -> 211 -> 1111 4-> 22 4-> 31 -> 1111 4-> 22 -> 112 -> 1111 4-> 211 4-> 22 -> 112 4-> 22 -> 211 -> 1111 4-> 1111 4-> 22 -> 211 4-> 22 -> 1111 4-> 211-> 1111 Triangle T(n,k) begins: 1; 1; 1, 1; 1, 2, 1; 1, 4, 6, 3; 1, 6, 15, 16, 6; 1, 10, 45, 88, 76, 24; 1, 14, 93, 282, 420, 302, 84; 1, 21, 223, 1052, 2489, 3112, 1970, 498; 1, 29, 444, 2950, 9865, 18123, 18618, 10046, 2220; 1, 41, 944, 9030, 42787, 112669, 173338, 155160, 74938, 15108; ...
Links
- Alois P. Heinz, Rows n = 0..170, flattened
- Wikipedia, Iverson bracket
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1, b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k)) end: T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..max(0, n-1)), n=0..12);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]]; T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, Max[0, n - 1] }] // Flatten (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
Comments