A327646 Total number of steps in all proper many times partitions of n.
0, 0, 1, 4, 25, 108, 788, 4740, 44445, 339632, 3625136, 35508536, 462626736, 5273725108, 76634997096, 1047347436984, 17542238923677, 268193251446228, 4949536256552648, 86303019303031400, 1768833677916545596, 34165810747993948664, 759192269597947084836
Offset: 0
Keywords
Examples
a(3) = 4 = 0+1+1+2, counting steps "->" in: 3, 3->21, 3->111, 3->21->111. a(4) = 25: 4, 4->31, 4->22, 4->211, 4->1111, 4->31->211, 4->31->1111, 4->22->112, 4->22->211, 4->22->1111, 4->211->1111, 4->31->211->1111, 4->22->112->1111, 4->22->211->1111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Crossrefs
Cf. A327639.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1, b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k)) end: a:= n-> add(k*add(b(n$2, i)*(-1)^(k-i)* binomial(k, i), i=0..k), k=1..n-1): seq(a(n), n=0..23);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]]; a[n_] := Sum[k Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}], {k, 1, n - 1}]; a /@ Range[0, 23] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=1..n-1} k * A327639(n,k).
Comments