A327648 Number of parts in all proper many times partitions of n.
0, 1, 3, 9, 45, 185, 1277, 7469, 67993, 514841, 5414197, 52609653, 679432169, 7704502013, 111283754969, 1515535050805, 25257251330321, 385282195339393, 7088110874426409, 123325149268482781, 2520808658222616653, 48623257343586890769, 1078165538033926164281
Offset: 0
Keywords
Examples
a(3) = 9 = 1 + 2 + 3 + 3, counting the (final) parts in: 3, 3->21, 3->111, 3->21->111. a(4) = 45: 4, 4->31, 4->22, 4->211, 4->1111, 4->31->211, 4->31->1111, 4->22->112, 4->22->211, 4->22->1111, 4->211->1111, 4->31->211->1111, 4->22->112->1111, 4->22->211->1111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Wikipedia, Partition (number theory)
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+ (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]* b(n-i, min(n-i, i), k)))(b(i$2, k-1)))) end: a:= n-> add(add(b(n$2, i)[2]*(-1)^(k-i)* binomial(k, i), i=0..k), k=0..n-1): seq(a(n), n=0..25);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]]; a[n_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {k, 0, n - 1}, {i, 0, k}]; a /@ Range[0, 25] (* Jean-François Alcover, May 01 2020, after Maple *)
Comments