cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A333569 a(n) = Sum_{d|n} (-1)^(bigomega(d) - omega(d)) * phi(n/d).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 6, 7, 10, 11, 6, 13, 14, 15, 10, 17, 14, 19, 10, 21, 22, 23, 18, 23, 26, 23, 14, 29, 30, 31, 22, 33, 34, 35, 14, 37, 38, 39, 30, 41, 42, 43, 22, 35, 46, 47, 30, 47, 46, 51, 26, 53, 46, 55, 42, 57, 58, 59, 30, 61, 62, 49, 42, 65, 66, 67, 34, 69, 70, 71, 42, 73, 74, 69
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 26 2020

Keywords

Comments

Moebius transform of A327668.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(PrimeOmega[d] - PrimeNu[d]) EulerPhi[n/d], {d, Divisors[n]}], {n, 1, 75}]
    Table[Sum[(-1)^(PrimeOmega[GCD[n, k]] - PrimeNu[GCD[n, k]]), {k, 1, n}], {n, 1, 75}]
    f[p_, e_] := If[e > 1, (p^e*(p^2+p-2) - 2*(-1)^e*p)/(p*(p + 1)), p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100] (* Amiram Eldar, Nov 12 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(bigomega(d) - omega(d)) * eulerphi(n/d)); \\ Michel Marcus, Mar 27 2020

Formula

a(n) = Sum_{k=1..n} (-1)^(bigomega(gcd(n,k)) - omega(gcd(n,k))).
a(n) = Sum_{d|n} mu(n/d) * A327668(d).
From Amiram Eldar, Nov 12 2022: (Start)
Multiplicative with a(p) = p, and a(p^e) = (p^e*(p^2+p-2) - 2*(-1)^e*p)/(p*(p+1)) for e>1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/5) * Product_{p prime} (1 + 2/p^2) = 0.4381740171... . (End)
Showing 1-1 of 1 results.