cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327668 a(n) = n * Sum_{d|n} (-1)^(bigomega(d) - omega(d)) / d.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 11, 11, 18, 12, 20, 14, 24, 24, 21, 18, 33, 20, 30, 32, 36, 24, 44, 29, 42, 34, 40, 30, 72, 32, 43, 48, 54, 48, 55, 38, 60, 56, 66, 42, 96, 44, 60, 66, 72, 48, 84, 55, 87, 72, 70, 54, 102, 72, 88, 80, 90, 60, 120, 62, 96, 88, 85, 84, 144, 68, 90, 96, 144
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 21 2019

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> n*add((-1)^(bigomega(d)-nops(factorset(d)))/d, d=divisors(n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 21 2019
  • Mathematica
    a[n_] := n Sum[(-1)^(PrimeOmega[d] - PrimeNu[d])/d, {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
    f[p_, e_] := p^e + (p^e-(-1)^e)/(p+1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 01 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + (f[i,1]^f[i,2] - (-1)^f[i,2])/(f[i,1]+1));} \\ Amiram Eldar, Dec 01 2022

Formula

G.f.: Sum_{k>=1} mu(rad(k)) * lambda(k) * x^k / (1 - x^k)^2.
a(p) = p + 1, where p is prime.
From Amiram Eldar, Dec 01 2022: (Start)
Multiplicative with a(p^e) = p^e + (p^e-(-1)^e)/(p+1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2+2)/(p^2+1)) = 0.7207673679... . (End)