cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327670 Sum of divisors of n that have an even number of distinct prime factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 1, 1, 1, 11, 1, 19, 1, 15, 16, 1, 1, 25, 1, 31, 22, 23, 1, 43, 1, 27, 1, 43, 1, 32, 1, 1, 34, 35, 36, 73, 1, 39, 40, 71, 1, 42, 1, 67, 61, 47, 1, 91, 1, 61, 52, 79, 1, 79, 56, 99, 58, 59, 1, 64, 1, 63, 85, 1, 66, 62, 1, 103, 70, 60, 1, 169, 1, 75, 91
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 21 2019

Keywords

Crossrefs

Cf. A000961 (positions of 1's), A000203, A030231, A049060, A285798, A318676, A327669.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(`if`(nops(factorset(d))::even, d, 0), d=divisors(n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 21 2019
  • Mathematica
    a[n_] := DivisorSum[n, # &, EvenQ[PrimeNu[#]] &]; Table[a[n], {n, 1, 75}]

Formula

G.f.: Sum_{k>=1} A030231(k) * x^A030231(k) / (1 - x^A030231(k)).
L.g.f.: log(B(x)) = Sum_{n>=1} a(n) * x^n / n, where B(x) = g.f. of A285798.
a(n) = A000203(n) - A327669(n).