cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A327716 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A003823.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 3, 4, 6, 7, 9, 10, 12, 14, 17, 21, 23, 26, 32, 40, 45, 51, 58, 69, 80, 89, 102, 116, 135, 154, 177, 198, 224, 253, 288, 326, 361, 408, 459, 521, 583, 650, 723, 812, 909, 1009, 1122, 1244, 1393, 1547, 1716, 1898, 2101, 2326, 2575, 2845, 3132, 3456, 3809
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2019

Keywords

Comments

a(n) > 0.

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[QPochhammer[x^(5*j - 3)] * QPochhammer[x^(5*j - 2)]/(QPochhammer[x^(5*j - 4)] * QPochhammer[x^(5*j - 1)]), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(5, d))))

Formula

G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(5*j-2))) * (1-x^(i*(5*j-3))) / ((1-x^(i*(5*j-1))) * (1-x^(i*(5*j-4)))).
G.f.: Product_{k>=1} (1-x^k)^(-A035187(k)).
a(n) ~ c * exp(Pi*sqrt(r*n)) / n^(3/4), where r = 4*log((1+sqrt(5))/2) / (3*sqrt(5)) = 0.2869392939760026925..., c = 0.203427046022096... - Vaclav Kotesovec, Sep 24 2019, updated May 09 2020

A327688 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A007325.

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 1, 0, 0, 0, 0, -2, 2, 1, 0, 1, -1, -1, -1, -1, 2, 1, 0, 1, -1, -3, 1, 2, -1, 0, 4, -6, -2, 3, -1, 1, 4, -1, -2, -1, 2, -4, 4, 0, -3, 1, -3, 4, 2, -1, 3, -1, -3, -1, 2, -3, 1, 2, -6, -3, 12, -7, 3, 11, -7, -4, 7, -10, -1, 7, 2, -16, 11, 2, -10, 14, -4, 3, -3
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2019

Keywords

Crossrefs

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(5, d))))

Formula

G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(5*j-1))) * (1-x^(i*(5*j-4))) / ((1-x^(i*(5*j-2))) * (1-x^(i*(5*j-3)))).
G.f.: Product_{k>=1} (1-x^k)^A035187(k).

A327690 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A003114.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 14, 19, 31, 43, 64, 88, 131, 176, 250, 337, 471, 626, 859, 1133, 1532, 2008, 2674, 3479, 4595, 5933, 7745, 9952, 12888, 16451, 21142, 26842, 34260, 43283, 54878, 68993, 87017, 108884, 136564, 170191, 212441, 263646, 327616, 405034, 501203, 617423, 760964
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(QPochhammer[x^(5*j - 4)] * QPochhammer[x^(5*j - 1)]), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2019 *)

Formula

G.f.: Product_{i>=1} Product_{j>=1} 1 / ((1-x^(i*(5*j-1))) * (1-x^(i*(5*j-4)))).

A327694 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A284321.

Original entry on oeis.org

1, 0, -1, -1, -1, 1, -1, 0, 0, 1, 4, 2, -1, -2, 1, 2, 0, -5, -2, 0, 5, -1, -6, -7, -3, 6, -1, -2, -6, 7, 18, 7, -8, -6, 1, 12, 4, -10, -7, 6, 27, 10, -21, -25, -1, 19, -4, -29, -26, 11, 39, 6, -27, -42, -3, 40, 12, -45, -32, 28, 90, 24, -55, -57, 9, 75, 14, -57, -59, 57, 139
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2019

Keywords

Crossrefs

Convolution inverse of A327691.

Formula

G.f.: Product_{i>=1} Product_{j>=1} (1 - x^(i*(5*j-2)))*(1 - x^(i*(5*j-3))).
Showing 1-4 of 4 results.