A327702 Number of refinement sequences n -> ... -> {1}^n, where in each step one part that is the rightmost copy of its size is replaced by a partition of itself into smaller parts (in weakly decreasing order).
1, 1, 2, 5, 14, 47, 174, 730, 3300, 16361, 85991, 485982, 2877194, 18064663, 118111993, 810388956, 5755059363, 42643884970, 325468477721, 2576976440845, 20960795772211, 176056148076418, 1514733658531058, 13418942409623726, 121442280888373117, 1128425823360525506
Offset: 1
Keywords
Examples
a(4) = 5: 4 -> 1111 4 -> 211 -> 1111 4 -> 31 -> 1111 4 -> 31 -> 211 -> 1111 4 -> 22 -> 211 -> 1111
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..58
- Wikipedia, Partition (number theory)
Programs
-
Maple
v:= l-> [seq(`if`(i=1 or l[i]>l[i-1], seq(subs(1=[][], sort( subsop(i=h[], l))), h=({combinat[partition](l[i])[]} minus{[l[i]]})), [][]), i=1..nops(l))]: b:= proc(l) option remember; `if`(max(l)<2, 1, add(b(h), h=v(l))) end: a:= n-> b([n]): seq(a(n), n=1..26);