A327711 Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all partitions of n (k is a partition length).
1, 1, 2, 3, 6, 10, 27, 55, 171, 475, 1555, 4915, 20023, 68243, 288024, 1213828, 5435935, 23966970, 121432923, 578757824, 3130381590, 16427772974, 91877826663, 519546134163, 3199523135912, 18868494152257, 120274458082095, 772954621249540, 5219747666882153
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..635
- Wikipedia, Multinomial coefficients
- Wikipedia, Partition (number theory)
Programs
-
Maple
with(combinat): a:= n-> add(multinomial(n-nops(p), map( x-> x-1, p)[], 0), p=partition(n)): seq(a(n), n=0..28); # second Maple program: b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<2, 0, b(n, i-1, p)) +b(n-i, min(n-i, i), p-1)/(i-1)!) end: a:= n-> b(n$3): seq(a(n), n=0..28);
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 2, 0, b[n, i - 1, p]] + b[n - i, Min[n - i, i], p - 1]/(i - 1)!]; a[n_] := b[n, n, n]; a /@ Range[0, 28] (* Jean-François Alcover, May 01 2020, from 2nd Maple program *)
Comments