cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327712 Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all compositions of n into distinct parts (k is a composition length).

Original entry on oeis.org

1, 1, 1, 3, 3, 9, 29, 57, 135, 615, 2635, 6273, 25151, 82623, 525281, 2941047, 9100709, 38766777, 205155713, 902705793, 7714938567, 52987356783, 204844103977, 1042657233471, 5520661314689, 38159472253821, 211945677298567, 2404720648663335, 19773733727088813
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2019

Keywords

Comments

Number of partitions of [n] with distinct block sizes such that each block contains exactly one block size as an element. a(5) = 9: 12345, 1235|4, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 1|2345.

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> add(multinomial(n-nops(p), map(x-> x-1, p)[], 0), p=map(h->
        permute(h)[], select(l-> nops(l)=nops({l[]}), partition(n)))):
    seq(a(n), n=0..28);
    # second Maple program:
    a:= proc(m) option remember; local b; b:=
          proc(n, i, j) option remember; `if`(i*(i+1)/2>=n,
           `if`(n=0, (m-j)!*j!, b(n, i-1, j)+
            b(n-i, min(n-i, i-1), j+1)/(i-1)!), 0)
          end: b(m$2, 0):
        end:
    seq(a(n), n=0..28);
  • Mathematica
    a[m_] := a[m] = Module[{b}, b[n_, i_, j_] := b[n, i, j] = If[i(i + 1)/2 >= n, If[n == 0, (m - j)! j!, b[n, i - 1, j] + b[n - i, Min[n - i, i - 1], j + 1]/(i - 1)!], 0]; b[m, m, 0]];
    a /@ Range[0, 28] (* Jean-François Alcover, May 10 2020, after 2nd Maple program *)