cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327727 Expansion of Product_{i>=1, j>=0} (1 + x^(i*2^j)) / (1 - x^(i*2^j)).

Original entry on oeis.org

1, 2, 6, 12, 28, 52, 104, 184, 340, 578, 1004, 1652, 2752, 4404, 7088, 11080, 17362, 26592, 40730, 61284, 92096, 136408, 201608, 294456, 428952, 618658, 889684, 1268624, 1803520, 2545164, 3580784, 5005584, 6976046, 9667164, 13356364, 18360368, 25165732
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Convolution of the sequences A000041 and A092119.

Crossrefs

Programs

  • Mathematica
    nmax = 36; CoefficientList[Series[Product[1/(1 - x^k)^(IntegerExponent[2 k, 2] + 1), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (IntegerExponent[2 d, 2] + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 36}]
  • PARI
    seq(n)={Vec(1/prod(k=1, n, (1 - x^k + O(x*x^n))^(2+valuation(k, 2))))} \\ Andrew Howroyd, Sep 23 2019

Formula

G.f.: Product_{k>=1} ((1 + x^k) / (1 - x^k))^A001511(k).
G.f.: Product_{k>=1} 1 / (1 - x^k)^(A001511(k) + 1).