cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A327798 Expansion of 1 / (1 - Sum_{i>=1, j>=1} x^(i*(j + 1))).

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 9, 10, 25, 34, 72, 106, 215, 330, 635, 1025, 1899, 3141, 5713, 9602, 17213, 29292, 51982, 89149, 157249, 271027, 476037, 823386, 1442063, 2500015, 4370386, 7588146, 13248591, 23026728, 40169991, 69865026, 121811765, 211954826, 369412910
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2019

Keywords

Comments

Invert transform of A032741.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(0)..a(N)
    G:= 1/(1-add(x^(2*k)/(1-x^k),k=1..(N+1)/2)):
    S:= series(G,x,N+1):
    seq(coeff(S,x,i),i=0..N); # Robert Israel, Jan 10 2023
  • Mathematica
    nmax = 38; CoefficientList[Series[1/(1 - Sum[x^(2 k)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[(DivisorSigma[0, k] - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 38}]

Formula

G.f.: 1 / (1 - Sum_{k>=1} x^(2*k) / (1 - x^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A032741(k) * a(n-k).

A327799 Expansion of 1 / (1 + Sum_{i>=1} Sum_{j=1..i} x^(i*j)).

Original entry on oeis.org

1, -1, 0, 0, -1, 2, -2, 2, -1, -2, 5, -6, 5, -1, -5, 10, -14, 14, -5, -10, 26, -38, 36, -15, -20, 60, -91, 93, -51, -33, 138, -223, 237, -145, -52, 307, -528, 596, -412, -43, 674, -1258, 1492, -1126, 84, 1442, -2938, 3687, -3034, 680, 3000, -6818, 9050, -7997
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 + Sum[x^(k^2)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -Sum[Floor[(DivisorSigma[0, k] + 1)/2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 53}]

Formula

G.f.: 1 / (1 + Sum_{k>=1} x^(k^2) / (1 - x^k)).
a(0) = 1; a(n) = -Sum_{k=1..n} A038548(k) * a(n-k).
Showing 1-2 of 2 results.