A340907 Numbers m without zero digits such that pod(q) = pod(k) = pod(m) where q = k + pod(k) and k = m + pod(m) where pod is the product of digits, A007954.
262713, 267338, 283628, 342713, 351678, 432713, 451676, 516469, 516657, 516675, 622713, 634838, 651674, 716655, 728364, 851673, 857297, 916465, 1262713, 1267338, 1283628, 1342713, 1351678, 1432713, 1451676, 1516469, 1516657, 1516675, 1622713, 1634838, 1651674
Offset: 1
Examples
262713 + pod(262713) = 262713 + 504 = 263217, whose product of digits is also 504, and 263217 + 504 = 263721 whose product of digits is again 504; hence, m=262713, k=263217, q=263721 and pod(m)=pod(k)=pod(q)=504, so 262713 is a term.
References
- Roman Fedorov, Alexei Belov, Alexander Kovaldzhi, and Ivan Yashchenko, Moscow-Mathematical Olympiads, 2000-2005, Level A, Problem 2, 2003; MSRI, 2011, p. 15 and 97.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
pod[n_] := Times @@ IntegerDigits[n]; seqQ[n_] := Module[{p = pod[n], k, q}, k = n + p; q = k + pod[k]; p > 0 && Equal @@ {p, pod[k], pod[q]}]; Select[Range[2*10^6], seqQ] (* Amiram Eldar, Jan 26 2021 *)
-
PARI
isok(m) = my(pm=vecprod(digits(m)), k=m+pm, pk=vecprod(digits(k)), q=k+pk, pq=vecprod(digits(q))); pm && (pm==pk) && (pk==pq); \\ Michel Marcus, Jan 26 2021
Extensions
Terms from Amiram Eldar, Jan 26 2021
Comments