A327769 Number of proper twice partitions of n.
0, 0, 0, 1, 6, 15, 45, 93, 223, 444, 944, 1802, 3721, 6898, 13530, 25150, 48047, 87702, 165173, 298670, 553292, 995698, 1815981, 3242921, 5872289, 10406853, 18630716, 32879716, 58391915, 102371974, 180622850, 314943742, 551841083, 958011541, 1667894139
Offset: 0
Keywords
Examples
a(3) = 1: 3 -> 21 -> 111 a(4) = 6: 4 -> 31 -> 211 4 -> 31 -> 1111 4 -> 22 -> 112 4 -> 22 -> 211 4 -> 22 -> 1111 4 -> 211-> 1111
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
- Wikipedia, Partition (number theory)
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1, b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k)) end: a:= n-> (k-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k))(2): seq(a(n), n=0..37);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]]; a[n_] := Sum[b[n, n, i] (-1)^(2 - i) Binomial[2, i], {i, 0, 2}]; a /@ Range[0, 37] (* Jean-François Alcover, May 01 2020, after Maple *)
Formula
From Vaclav Kotesovec, May 27 2020: (Start)
a(n) ~ c * 5^(n/4), where
c = 96146522937.7161... if mod(n,4) = 0
c = 96146521894.9433... if mod(n,4) = 1
c = 96146522937.2138... if mod(n,4) = 2
c = 96146521894.8218... if mod(n,4) = 3
(End)