cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327769 Number of proper twice partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 6, 15, 45, 93, 223, 444, 944, 1802, 3721, 6898, 13530, 25150, 48047, 87702, 165173, 298670, 553292, 995698, 1815981, 3242921, 5872289, 10406853, 18630716, 32879716, 58391915, 102371974, 180622850, 314943742, 551841083, 958011541, 1667894139
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2019

Keywords

Examples

			a(3) = 1:
  3 -> 21 -> 111
a(4) = 6:
  4 -> 31 -> 211
  4 -> 31 -> 1111
  4 -> 22 -> 112
  4 -> 22 -> 211
  4 -> 22 -> 1111
  4 -> 211-> 1111
		

Crossrefs

Column k=2 of A327639.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
          b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    a:= n-> (k-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k))(2):
    seq(a(n), n=0..37);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]];
    a[n_] := Sum[b[n, n, i] (-1)^(2 - i) Binomial[2, i], {i, 0, 2}];
    a /@ Range[0, 37] (* Jean-François Alcover, May 01 2020, after Maple *)

Formula

From Vaclav Kotesovec, May 27 2020: (Start)
a(n) ~ c * 5^(n/4), where
c = 96146522937.7161... if mod(n,4) = 0
c = 96146521894.9433... if mod(n,4) = 1
c = 96146522937.2138... if mod(n,4) = 2
c = 96146521894.8218... if mod(n,4) = 3
(End)