cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A063834 Twice partitioned numbers: the number of ways a number can be partitioned into not necessarily different parts and each part is again so partitioned.

Original entry on oeis.org

1, 1, 3, 6, 15, 28, 66, 122, 266, 503, 1027, 1913, 3874, 7099, 13799, 25501, 48508, 88295, 165942, 299649, 554545, 997281, 1817984, 3245430, 5875438, 10410768, 18635587, 32885735, 58399350, 102381103, 180634057, 314957425, 551857780, 958031826, 1667918758
Offset: 0

Views

Author

Wouter Meeussen, Aug 21 2001

Keywords

Comments

These are different from plane partitions.
For ordered partitions of partitions see A055887 which may be computed from A036036 and A048996. - Alford Arnold, May 19 2006
Twice partitioned numbers correspond to triangles (or compositions) in the multiorder of integer partitions. - Gus Wiseman, Oct 28 2015

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + 266*x^8 + ...
If n=6, a possible first partitioning is (3+3), resulting in the following second partitionings: ((3),(3)), ((3),(2+1)), ((3),(1+1+1)), ((2+1),(3)), ((2+1),(2+1)), ((2+1),(1+1+1)), ((1+1+1),(3)), ((1+1+1),(2+1)), ((1+1+1),(1+1+1)).
		

Crossrefs

The strict case is A296122.
Row sums of A321449.
Column k=2 of A323718.
Without singletons we have A327769, A358828, A358829.
For odd lengths we have A358823, A358824.
For distinct lengths we have A358830, A358912.
For strict partitions see A358914, A382524.
A000041 counts integer partitions, strict A000009.
A001970 counts multiset partitions of integer partitions.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1)+`if`(i>n, 0, numbpart(i)*b(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 26 2015
  • Mathematica
    Table[Plus @@ Apply[Times, IntegerPartitions[i] /. i_Integer :> PartitionsP[i], 2], {i, 36}]
    (* second program: *)
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i > n, 0, PartitionsP[i]*b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 19 2016 */

Formula

G.f.: 1/Product_{k>0} (1-A000041(k)*x^k). n*a(n) = Sum_{k=1..n} b(k)*a(n-k), a(0) = 1, where b(k) = Sum_{d|k} d*A000041(d)^(k/d) = 1, 5, 10, 29, 36, 110, 106, ... . - Vladeta Jovovic, Jun 19 2003
From Vaclav Kotesovec, Mar 27 2016: (Start)
a(n) ~ c * 5^(n/4), where
c = 96146522937.7161898848278970039269600938032826... if n mod 4 = 0
c = 96146521894.9433858914667933636782092683849082... if n mod 4 = 1
c = 96146522937.2138934755566928890704687838407524... if n mod 4 = 2
c = 96146521894.8218716328341714149619262713426755... if n mod 4 = 3
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 26 2015

A327639 Number T(n,k) of proper k-times partitions of n; triangle T(n,k), n >= 0, 0 <= k <= max(0,n-1), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 15, 16, 6, 1, 10, 45, 88, 76, 24, 1, 14, 93, 282, 420, 302, 84, 1, 21, 223, 1052, 2489, 3112, 1970, 498, 1, 29, 444, 2950, 9865, 18123, 18618, 10046, 2220, 1, 41, 944, 9030, 42787, 112669, 173338, 155160, 74938, 15108
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2019

Keywords

Comments

In each step at least one part is replaced by the partition of itself into smaller parts. The parts are not resorted.
T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero.
Row n is the inverse binomial transform of the n-th row of array A323718.

Examples

			T(4,0) = 1:  4
T(4,1) = 4:     T(4,2) = 6:          T(4,3) = 3:
  4-> 31          4-> 31 -> 211        4-> 31 -> 211 -> 1111
  4-> 22          4-> 31 -> 1111       4-> 22 -> 112 -> 1111
  4-> 211         4-> 22 -> 112        4-> 22 -> 211 -> 1111
  4-> 1111        4-> 22 -> 211
                  4-> 22 -> 1111
                  4-> 211-> 1111
Triangle T(n,k) begins:
  1;
  1;
  1,  1;
  1,  2,   1;
  1,  4,   6,    3;
  1,  6,  15,   16,     6;
  1, 10,  45,   88,    76,     24;
  1, 14,  93,  282,   420,    302,     84;
  1, 21, 223, 1052,  2489,   3112,   1970,    498;
  1, 29, 444, 2950,  9865,  18123,  18618,  10046,  2220;
  1, 41, 944, 9030, 42787, 112669, 173338, 155160, 74938, 15108;
  ...
		

Crossrefs

Columns k=0-2 give A000012, A000065, A327769.
Row sums give A327644.
T(2n,n) gives A327645.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
          b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..max(0, n-1)), n=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]];
    T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 0, 12}, {k, 0, Max[0, n - 1] }] // Flatten (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k,i) * A323718(n,i).
T(n,n-1) = A327631(n,n-1)/n = A327643(n) for n >= 1.
Sum_{k=1..n-1} k * T(n,k) = A327646(n).
Sum_{k=0..max(0,n-1)} (-1)^k * T(n,k) = [n<2], where [] is an Iverson bracket.

A328042 Number of parts in all proper twice partitions of n.

Original entry on oeis.org

3, 21, 61, 205, 474, 1246, 2723, 6277, 12961, 28682, 56976, 118919, 234715, 473988, 913011, 1807211, 3430048, 6648397, 12500170, 23764885, 44174088, 83090853, 152803509, 283387971, 517516615, 949775754, 1719088271, 3127641937, 5618833687, 10133255636
Offset: 3

Views

Author

Alois P. Heinz, Oct 02 2019

Keywords

Crossrefs

Column k=2 of A327631.
Cf. A327769.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
         `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
             (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
            b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
        end:
    a:= n-> (k-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k))(2):
    seq(a(n), n=3..35);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
    a[n_] := With[{k = 2}, Sum[b[n, n, i][[2]] (-1)^(k-i) Binomial[k, i], {i, 0, k}]];
    a /@ Range[3, 35] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
Showing 1-3 of 3 results.