A327775 Heinz numbers of integer partitions whose LCM is twice their sum.
154, 190, 435, 580, 714, 952, 1118, 1287, 1430, 1653, 1716, 1815, 1935, 2067, 2150, 2204, 2254, 2288, 2415, 2475, 2580, 2756, 2898, 2970, 3220, 3300, 3440, 3710, 3864, 3960, 3975, 4770, 5152, 5280, 5300, 6360, 6461, 6897, 7514, 8307, 8480, 8619, 8695, 8778
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 154: {1,4,5} 190: {1,3,8} 435: {2,3,10} 580: {1,1,3,10} 714: {1,2,4,7} 952: {1,1,1,4,7} 1118: {1,6,14} 1287: {2,2,5,6} 1430: {1,3,5,6} 1653: {2,8,10} 1716: {1,1,2,5,6} 1815: {2,3,5,5} 1935: {2,2,3,14} 2067: {2,6,16} 2150: {1,3,3,14} 2204: {1,1,8,10} 2254: {1,4,4,9} 2288: {1,1,1,1,5,6} 2415: {2,3,4,9} 2475: {2,2,3,3,5}
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
q:= n-> (l-> is(ilcm(l[])=2*add(j, j=l)))(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])): select(q, [$1..10000])[]; # Alois P. Heinz, Sep 27 2019
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[2,1000],LCM@@primeMS[#]==2*Total[primeMS[#]]&]
Comments