A327778 Number of integer partitions of n whose LCM is a multiple of n.
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 11, 1, 11, 23, 1, 1, 23, 1, 85, 85, 45, 1, 152, 1, 84, 1, 451, 1, 1787, 1, 1, 735, 260, 1925, 1908, 1, 437, 1877, 4623, 1, 14630, 1, 6934, 10519, 1152, 1, 6791, 1, 1817, 10159, 22556, 1, 2819, 47927, 69333, 22010, 4310, 1
Offset: 0
Keywords
Examples
The partitions of n = 6, 10, 12, and 15 whose LCM is a multiple of n: (6) (10) (12) (15) (3,2,1) (5,3,2) (5,4,3) (6,5,4) (5,4,1) (6,4,2) (7,5,3) (5,2,2,1) (8,3,1) (9,5,1) (5,2,1,1,1) (4,3,3,2) (10,3,2) (4,4,3,1) (5,4,3,3) (6,4,1,1) (5,5,3,2) (4,3,2,2,1) (6,5,2,2) (4,3,3,1,1) (6,5,3,1) (4,3,2,1,1,1) (10,3,1,1) (4,3,1,1,1,1,1) (5,3,3,2,2) (5,3,3,3,1) (5,4,3,2,1) (5,5,3,1,1) (6,5,2,1,1) (5,3,2,2,2,1) (5,3,3,2,1,1) (5,4,3,1,1,1) (6,5,1,1,1,1) (5,3,2,2,1,1,1) (5,3,3,1,1,1,1) (5,3,2,1,1,1,1,1) (5,3,1,1,1,1,1,1,1)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
a:= proc(m) option remember; local b; b:= proc(n, i, l) option remember; `if`(n=0 or i=1, `if`(l=m, 1, 0), `if`(i<2, 0, b(n, i-1, l))+ b(n-i, min(n-i, i), igcd(m, ilcm(l, i)))) end; `if`(isprime(m), 1, b(m$2, 1)) end: seq(a(n), n=0..60); # Alois P. Heinz, Sep 26 2019
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Divisible[LCM@@#,n]&]],{n,30}] (* Second program: *) a[m_] := a[m] = Module[{b}, b[n_, i_, l_] := b[n, i, l] = If[n == 0 || i == 1, If[l == m, 1, 0], If[i<2, 0, b[n, i - 1, l]] + b[n - i, Min[n - i, i], GCD[m, LCM[l, i]]]]; If[PrimeQ[m], 1, b[m, m, 1]]]; a /@ Range[0, 60] (* Jean-François Alcover, May 18 2021, after Alois P. Heinz *)
Formula
a(n) = 1 <=> n in { A000961 }. - Alois P. Heinz, Sep 26 2019