cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327778 Number of integer partitions of n whose LCM is a multiple of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 11, 1, 11, 23, 1, 1, 23, 1, 85, 85, 45, 1, 152, 1, 84, 1, 451, 1, 1787, 1, 1, 735, 260, 1925, 1908, 1, 437, 1877, 4623, 1, 14630, 1, 6934, 10519, 1152, 1, 6791, 1, 1817, 10159, 22556, 1, 2819, 47927, 69333, 22010, 4310, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2019

Keywords

Examples

			The partitions of n = 6, 10, 12, and 15 whose LCM is a multiple of n:
  (6)      (10)         (12)             (15)
  (3,2,1)  (5,3,2)      (5,4,3)          (6,5,4)
           (5,4,1)      (6,4,2)          (7,5,3)
           (5,2,2,1)    (8,3,1)          (9,5,1)
           (5,2,1,1,1)  (4,3,3,2)        (10,3,2)
                        (4,4,3,1)        (5,4,3,3)
                        (6,4,1,1)        (5,5,3,2)
                        (4,3,2,2,1)      (6,5,2,2)
                        (4,3,3,1,1)      (6,5,3,1)
                        (4,3,2,1,1,1)    (10,3,1,1)
                        (4,3,1,1,1,1,1)  (5,3,3,2,2)
                                         (5,3,3,3,1)
                                         (5,4,3,2,1)
                                         (5,5,3,1,1)
                                         (6,5,2,1,1)
                                         (5,3,2,2,2,1)
                                         (5,3,3,2,1,1)
                                         (5,4,3,1,1,1)
                                         (6,5,1,1,1,1)
                                         (5,3,2,2,1,1,1)
                                         (5,3,3,1,1,1,1)
                                         (5,3,2,1,1,1,1,1)
                                         (5,3,1,1,1,1,1,1,1)
		

Crossrefs

The Heinz numbers of these partitions are given by A327783.
Partitions whose LCM is equal to their sum are A074761.
Partitions whose LCM is greater than their sum are A327779.
Partitions whose LCM is less than their sum are A327781.

Programs

  • Maple
    a:= proc(m) option remember; local b; b:=
          proc(n, i, l) option remember; `if`(n=0 or i=1,
            `if`(l=m, 1, 0), `if`(i<2, 0, b(n, i-1, l))+
             b(n-i, min(n-i, i), igcd(m, ilcm(l, i))))
          end; `if`(isprime(m), 1, b(m$2, 1))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 26 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[LCM@@#,n]&]],{n,30}]
    (* Second program: *)
    a[m_] := a[m] = Module[{b}, b[n_, i_, l_] := b[n, i, l] = If[n == 0 || i == 1, If[l == m, 1, 0], If[i<2, 0, b[n, i - 1, l]] + b[n - i, Min[n - i, i], GCD[m, LCM[l, i]]]]; If[PrimeQ[m], 1, b[m, m, 1]]];
    a /@ Range[0, 60] (* Jean-François Alcover, May 18 2021, after Alois P. Heinz *)

Formula

a(n) = 1 <=> n in { A000961 }. - Alois P. Heinz, Sep 26 2019