A327801 Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts incorporating k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 3, 2, 1, 10, 9, 3, 1, 47, 40, 18, 4, 1, 246, 235, 100, 30, 5, 1, 1602, 1476, 705, 200, 45, 6, 1, 11481, 11214, 5166, 1645, 350, 63, 7, 1, 95503, 91848, 44856, 13776, 3290, 560, 84, 8, 1, 871030, 859527, 413316, 134568, 30996, 5922, 840, 108, 9, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 3, 2, 1; 10, 9, 3, 1; 47, 40, 18, 4, 1; 246, 235, 100, 30, 5, 1; 1602, 1476, 705, 200, 45, 6, 1; 11481, 11214, 5166, 1645, 350, 63, 7, 1; 95503, 91848, 44856, 13776, 3290, 560, 84, 8, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Multinomial coefficients
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
with(combinat): T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0), l= select(x-> k=0 or k in x, partition(n))): seq(seq(T(n, k), k=0..n), n=0..10); # second Maple program: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<2, 0, b(n, i-1, `if`(i=k, 0, k)))+ `if`(i=k, 0, b(n-i, min(n-i, i), k)/i!)) end: T:= (n, k)-> n!*(b(n$2, 0)-`if`(k=0, 0, b(n$2, k))): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] + If[i == k, 0, b[n - i, Min[n - i, i], k]/i!]]; T[n_, k_] := n! (b[n, n, 0] - If[k == 0, 0, b[n, n, k]]); Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, from 2nd Maple program *)
Comments