cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327801 Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts incorporating k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 10, 9, 3, 1, 47, 40, 18, 4, 1, 246, 235, 100, 30, 5, 1, 1602, 1476, 705, 200, 45, 6, 1, 11481, 11214, 5166, 1645, 350, 63, 7, 1, 95503, 91848, 44856, 13776, 3290, 560, 84, 8, 1, 871030, 859527, 413316, 134568, 30996, 5922, 840, 108, 9, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 25 2019

Keywords

Comments

Here we assume that every list of parts has at least one 0 because its addition does not change the value of the multinomial.

Examples

			Triangle T(n,k) begins:
      1;
      1,     1;
      3,     2,     1;
     10,     9,     3,     1;
     47,    40,    18,     4,    1;
    246,   235,   100,    30,    5,   1;
   1602,  1476,   705,   200,   45,   6,  1;
  11481, 11214,  5166,  1645,  350,  63,  7, 1;
  95503, 91848, 44856, 13776, 3290, 560, 84, 8, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A005651, A327827, A327828.
Row sums give A320566.
T(2n,n) gives A266518.
T(n,n-1) gives A001477.
T(n+1,n-1) gives A045943.
Cf. A327869.

Programs

  • Maple
    with(combinat):
    T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0), l=
                 select(x-> k=0 or k in x, partition(n))):
    seq(seq(T(n, k), k=0..n), n=0..10);
    # second Maple program:
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i<2, 0, b(n, i-1, `if`(i=k, 0, k)))+
          `if`(i=k, 0, b(n-i, min(n-i, i), k)/i!))
        end:
    T:= (n, k)-> n!*(b(n$2, 0)-`if`(k=0, 0, b(n$2, k))):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] + If[i == k, 0, b[n - i, Min[n - i, i], k]/i!]];
    T[n_, k_] := n! (b[n, n, 0] - If[k == 0, 0, b[n, n, k]]);
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, from 2nd Maple program *)