A327823 Odd integers m such that every odd integer k with 1 < k < m and gcd(k,m) = 1 is prime.
1, 3, 5, 7, 9, 15, 21, 45, 105
Offset: 1
Examples
For m = 15 and 1 < k odd < 15, we have gcd(3,15) = 3, gcd(5,15) = 5, gcd(7,15) = 1, gcd(9,15) = 3, gcd(11,15) = 1, gcd(13,15) = 1. So, gcd(k,15) = 1 only if k is prime and 15 is a term. For m = 63, we have gcd(25,63) = 1 with 25 no prime, so 63 is not a term.
References
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, number 105, page 118.
Links
- Solomon W. Golomb and Kee-Wai Lau, Problem E3137, American Mathematical Monthly, Vol. 94, No. 9, Nov. 1987, pp. 883-884.
Crossrefs
Cf. A048597.
Programs
-
Mathematica
aQ[n_] := OddQ[n] && AllTrue[Select[Range[3, n, 2], CoprimeQ[n, #] &], PrimeQ]; Select[Range[10^3], aQ] (* Amiram Eldar, Sep 27 2019 *)
-
PARI
isok(m) = {if (m % 2, forstep (k=3, m-1, 2, if ((gcd(k, m) == 1) && !isprime(k), return(0));); return(1););} \\ Michel Marcus, Sep 27 2019
Comments