cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327826 Sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a set of size two.

Original entry on oeis.org

0, 0, 0, 3, 16, 125, 711, 5915, 46264, 438681, 4371085, 49321745, 588219523, 7751724513, 108240044745, 1633289839823, 26102966544024, 445098171557393, 8006283582196761, 152353662601600853, 3046062181913575921, 64015245150903376151, 1408108698825029286195
Offset: 0

Views

Author

Alois P. Heinz, Sep 26 2019

Keywords

Crossrefs

Column k=2 of A327803.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; series(`if`(n=0, 1,
         `if`(i<1, 0, add(x^signum(j)*b(n-i*j, i-1)*
          multinomial(n, n-i*j, i$j), j=0..n/i))), x, 3)
        end:
    a:= n-> coeff(b(n$2), x, 2):
    seq(a(n), n=0..25);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[x^Sign[j] b[n - i*j, i - 1] multinomial[n, Join[{n - i*j}, Table[i, {j}]]], {j, 0, n/i}]]], {x, 0, 3}];
    a[n_] := SeriesCoefficient[b[n, n], {x, 0, 2}];
    a /@ Range[0, 25] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * n!, where c = Sum_{k>=2} 1/(k! - 1) = A331373 = 1.253498755699953471643360937905798940369232208332... - Vaclav Kotesovec, Sep 28 2019, updated Jul 19 2021