cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A327803 Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a set of size k; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 7, 3, 0, 31, 16, 0, 121, 125, 0, 831, 711, 60, 0, 5041, 5915, 525, 0, 42911, 46264, 6328, 0, 364561, 438681, 67788, 0, 3742453, 4371085, 753420, 12600, 0, 39916801, 49321745, 8924685, 166320, 0, 486891175, 588219523, 113501784, 2966040
Offset: 0

Views

Author

Alois P. Heinz, Sep 25 2019

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,       1;
  0,       3;
  0,       7,       3;
  0,      31,      16;
  0,     121,     125;
  0,     831,     711,     60;
  0,    5041,    5915,    525;
  0,   42911,   46264,   6328;
  0,  364561,  438681,  67788;
  0, 3742453, 4371085, 753420, 12600;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A061095, A327826.
Row sums give A005651.
Cf. A000217, A003056, A022915, A131632 (when the parts are distinct), A226874.

Programs

  • Maple
    with(combinat):
    T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0), l=
                 select(x-> nops({x[]})=k, partition(n))):
    seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..14);
    # second Maple program:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(x^signum(j)*b(n-i*j, i-1)*
          combinat[multinomial](n, n-i*j, i$j), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..14);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[x^Sign[j]*b[n - i*j, i-1]*multinomial[n, Join[{n-i*j}, Table[i, {j}]]], {j, 0, n/i}]]]];
    T[n_] := CoefficientList[b[n, n], x];
    T /@ Range[0, 14] // Flatten (* Jean-François Alcover, May 06 2020, after 2nd Maple program *)

Formula

T(n*(n+1)/2,n) = T(A000217(n),n) = A022915(n).

A331373 Decimal expansion of Sum_{k>=2} 1/(k! - 1).

Original entry on oeis.org

1, 2, 5, 3, 4, 9, 8, 7, 5, 5, 6, 9, 9, 9, 5, 3, 4, 7, 1, 6, 4, 3, 3, 6, 0, 9, 3, 7, 9, 0, 5, 7, 9, 8, 9, 4, 0, 3, 6, 9, 2, 3, 2, 2, 0, 8, 3, 3, 2, 0, 1, 3, 4, 1, 7, 0, 6, 3, 8, 3, 4, 7, 1, 6, 6, 4, 0, 9, 5, 2, 4, 8, 2, 0, 4, 8, 9, 8, 7, 1, 7, 0, 8, 9, 0, 2, 4
Offset: 1

Views

Author

Amiram Eldar, May 03 2020

Keywords

Comments

Erdős was interested in the question whether this constant is irrational.

Examples

			1.25349875569995347164336093790579894036923220833201...
		

References

  • Paul Erdős, Some of my favourite unsolved problems, in A. Baker, B. Bollobás and A. Hajnal (eds.), A tribute to Paul Erdős, Cambridge University Press, 1990, p. 470.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/(k! - 1), {k, 2, 300}], 10, 100][[1]]
  • PARI
    suminf(k=2, 1/(k!-1)) \\ Michel Marcus, May 03 2020
Showing 1-2 of 2 results.