A005651
Sum of multinomial coefficients (n_1+n_2+...)!/(n_1!*n_2!*...) where (n_1, n_2, ...) runs over all integer partitions of n.
Original entry on oeis.org
1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 8879558, 98329551, 1191578522, 15543026747, 218668538441, 3285749117475, 52700813279423, 896697825211142, 16160442591627990, 307183340680888755, 6147451460222703502, 129125045333789172825, 2841626597871149750951
Offset: 0
For n=3, say the first three cans in the row contain red, white, and blue paint respectively. The objects can be painted r,r,r or r,r,w or r,w,b and then linearly ordered in 1 + 3 + 6 = 10 ways. - _Geoffrey Critzer_, Jun 08 2009
From _Gus Wiseman_, Sep 03 2018: (Start)
The a(3) = 10 ordered set partitions with weakly decreasing block sizes:
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
{{2},{3},{1}}
{{3},{1},{2}}
{{3},{2},{1}}
{{2,3},{1}}
{{1,2},{3}}
{{1,3},{2}}
{{1,2,3}}
(End)
- Abramowitz and Stegun, Handbook, p. 831, column labeled "M_1".
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 101 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. E. Hoffman, Updown categories: Generating functions and universal covers, arXiv preprint arXiv:1207.1705 [math.CO], 2012.
- A. Knopfmacher, A. M. Odlyzko, B. Pittel, L. B. Richmond, D. Stark, G. Szekeres, and N. C. Wormald, The Asymptotic Number of Set Partitions with Unequal Block Sizes, The Electronic Journal of Combinatorics, 6 (1999), R2.
- S. Schreiber & N. J. A. Sloane, Correspondence, 1980.
Cf.
A000041,
A000110,
A000258,
A000670,
A007837,
A008277,
A008480,
A036038,
A140585,
A178682,
A212855,
A247551,
A300335,
A318762.
-
A005651b := proc(k) add( d/(d!)^(k/d),d=numtheory[divisors](k)) ; end proc:
A005651 := proc(n) option remember; local k ; if n <= 1 then 1; else (n-1)!*add(A005651b(k)*procname(n-k)/(n-k)!, k=1..n) ; end if; end proc:
seq(A005651(k), k=0..10) ; # R. J. Mathar, Jan 03 2011
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0 or i=1, n!,
b(n, i-1) +binomial(n, i)*b(n-i, min(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 29 2015, Dec 12 2016
-
Table[Total[n!/Map[Function[n, Apply[Times, n! ]], IntegerPartitions[n]]], {n, 0, 20}] (* Geoffrey Critzer, Jun 08 2009 *)
Table[Total[Apply[Multinomial, IntegerPartitions[n], {1}]], {n, 0, 20}] (* Jean-François Alcover and Olivier Gérard, Sep 11 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[t==1, 1/n!, Sum[b[n-j, j, t-1]/j!, {j, i, n/t}]]; a[n_] := If[n==0, 1, n!*b[n, 0, n]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 20 2015, after Alois P. Heinz *)
-
a(m,n):=if n=m then 1 else sum(binomial(n,k)*a(k,n-k),k,m,(n/2))+1;
makelist(a(1,n),n,0,17); /* Vladimir Kruchinin, Sep 06 2014 */
-
a(n)=my(N=n!,s);forpart(x=n,s+=N/prod(i=1,#x,x[i]!));s \\ Charles R Greathouse IV, May 01 2015
-
{ my(n=25); Vec(serlaplace(prod(k=1, n, 1/(1-x^k/k!) + O(x*x^n)))) } \\ Andrew Howroyd, Dec 20 2017
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
A022915
Multinomial coefficients (0, 1, ..., n)! = C(n+1,2)!/(0!*1!*2!*...*n!).
Original entry on oeis.org
1, 1, 3, 60, 12600, 37837800, 2053230379200, 2431106898187968000, 73566121315513295589120000, 65191584694745586153436251091200000, 1906765806522767212441719098019963758016000000, 2048024348726152339387799085049745725891853852479488000000
Offset: 0
From _Gus Wiseman_, Aug 12 2020: (Start)
The a(3) = 60 permutations of the prime indices of A006939(3) = 360:
(111223) (121123) (131122) (212113) (231211)
(111232) (121132) (131212) (212131) (232111)
(111322) (121213) (131221) (212311) (311122)
(112123) (121231) (132112) (213112) (311212)
(112132) (121312) (132121) (213121) (311221)
(112213) (121321) (132211) (213211) (312112)
(112231) (122113) (211123) (221113) (312121)
(112312) (122131) (211132) (221131) (312211)
(112321) (122311) (211213) (221311) (321112)
(113122) (123112) (211231) (223111) (321121)
(113212) (123121) (211312) (231112) (321211)
(113221) (123211) (211321) (231121) (322111)
(End)
A190945 counts the case of anti-run permutations.
A317829 counts partitions of this multiset.
A325617 is the version for factorials instead of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A008480 counts permutations of prime indices.
-
with(combinat):
a:= n-> multinomial(binomial(n+1, 2), $0..n):
seq(a(n), n=0..12); # Alois P. Heinz, May 18 2013
-
Table[Apply[Multinomial ,Range[n]], {n, 0, 20}] (* Geoffrey Critzer, Dec 09 2012 *)
Table[Multinomial @@ Range[n], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
Table[Binomial[n + 1, 2]!/BarnesG[n + 2], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
Table[Length[Permutations[Join@@Table[i,{i,n},{i}]]],{n,0,4}] (* Gus Wiseman, Aug 12 2020 *)
-
a(n) = binomial(n+1,2)!/prod(k=1, n, k^(n+1-k)); \\ Michel Marcus, May 02 2019
More terms from Larry Reeves (larryr(AT)acm.org), Apr 11 2001
A226874
Number T(n,k) of n-length words w over a k-ary alphabet {a1, a2, ..., ak} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 1, where #(w,x) counts the letters x in word w; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 3, 6, 0, 1, 10, 12, 24, 0, 1, 15, 50, 60, 120, 0, 1, 41, 180, 300, 360, 720, 0, 1, 63, 497, 1260, 2100, 2520, 5040, 0, 1, 162, 1484, 6496, 10080, 16800, 20160, 40320, 0, 1, 255, 5154, 20916, 58464, 90720, 151200, 181440, 362880
Offset: 0
T(4,2) = 10: aaab, aaba, aabb, abaa, abab, abba, baaa, baab, baba, bbaa.
T(4,3) = 12: aabc, aacb, abac, abca, acab, acba, baac, baca, bcaa, caab, caba, cbaa.
T(5,2) = 15: aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, abbaa, baaaa, baaab, baaba, babaa, bbaaa.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 1, 3, 6;
0, 1, 10, 12, 24;
0, 1, 15, 50, 60, 120;
0, 1, 41, 180, 300, 360, 720;
0, 1, 63, 497, 1260, 2100, 2520, 5040;
0, 1, 162, 1484, 6496, 10080, 16800, 20160, 40320;
...
Columns k=0-10 give:
A000007,
A057427,
A226881,
A226882,
A226883,
A226884,
A226885,
A226886,
A226887,
A226888,
A226889.
-
b:= proc(n, i, t) option remember;
`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
T:= (n, k)-> `if`(n*k=0, `if`(n=k, 1, 0), n!*b(n, 1, k)):
seq(seq(T(n, k), k=0..n), n=0..12);
# second Maple program:
b:= proc(n, i) option remember; expand(
`if`(n=0, 1, `if`(i<1, 0, add(x^j*b(n-i*j, i-1)*
combinat[multinomial](n, n-i*j, i$j), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
seq(T(n), n=0..12);
-
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]]; t[n_, k_] := If[n*k == 0, If[n == k, 1, 0], n!*b[n, 1, k]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from first Maple *)
-
T(n)={Vec(serlaplace(prod(k=1, n, 1/(1-y*x^k/k!) + O(x*x^n))))}
{my(t=T(10)); for(n=1, #t, for(k=0, n-1, print1(polcoeff(t[n], k), ", ")); print)} \\ Andrew Howroyd, Dec 20 2017
A061095
Number of ways of dividing n labeled items into labeled boxes with an equal number of items in each box.
Original entry on oeis.org
1, 3, 7, 31, 121, 831, 5041, 42911, 364561, 3742453, 39916801, 486891175, 6227020801, 87859375033, 1307843292757, 21004582611871, 355687428096001, 6415015584161757, 121645100408832001, 2435278206317164781, 51091124681475552961, 1124549556257968545433
Offset: 1
a(6) = 720+90+20+1 = 831 since 720 ways of evenly distributing six labeled items into six labeled boxes, 90 into three, 20 into two and 1 into one.
-
A061095 := n -> add(n!/(n/d)!^d, d = numtheory[divisors](n));
seq(A061095 (n), n = 1..17); # Peter Luschny, Apr 13 2011
-
Table[Sum[n!/(n/d)!^d,{d,Divisors[n]}],{n,1,20}] (* Geoffrey Critzer, Aug 18 2011 *)
-
/* compare to A038041 */
mnom(v)=
/* Multinomial coefficient s! / prod(j=1,n, v[j]!) where
s= sum(j=1,n, v[j]) and n is the number of elements in v[]. */
sum(j=1,#v, v[j])! / prod(j=1,#v, v[j]!)
A061095(n)={local(r=0);fordiv(n,d,r+=mnom(vector(d,j,n/d)));return(r);}
vector(33,n,A061095(n)) /* Joerg Arndt, Apr 16 2011 */
-
a(n)=sumdiv(n,d, n!/(n/d)!^d ); \\ Joerg Arndt, Feb 23 2014
A131632
Triangle T(n,k) read by rows = number of partitions of n-set into k blocks with distinct sizes, k = 1..A003056(n).
Original entry on oeis.org
1, 1, 1, 3, 1, 4, 1, 15, 1, 21, 60, 1, 63, 105, 1, 92, 448, 1, 255, 2016, 1, 385, 4980, 12600, 1, 1023, 15675, 27720, 1, 1585, 61644, 138600, 1, 4095, 155155, 643500, 1, 6475, 482573, 4408404, 1, 16383, 1733550, 12687675, 37837800, 1, 26332, 4549808, 60780720
Offset: 1
Triangle T(n,k)begins:
1;
1;
1, 3;
1, 4;
1, 15;
1, 21, 60;
1, 63, 105;
1, 92, 448;
1, 255, 2016;
1, 385, 4980, 12600;
1, 1023, 15675, 27720;
1, 1585, 61644, 138600;
1, 4095, 155155, 643500;
1, 6475, 482573, 4408404;
1, 16383, 1733550, 12687675, 37837800;
...
-
b:= proc(n, i, t, v) option remember; `if`(t=1, 1/(n+v)!,
add(b(n-j, j, t-1, v+1)/(j+v)!, j=i..n/t))
end:
T:= (n, k)->`if`(k*(k+1)/2>n, 0, n!*b(n-k*(k+1)/2, 0, k, 1)):
seq(seq(T(n, k), k=1..floor(sqrt(2+2*n)-1/2)), n=1..20);
# Alois P. Heinz, Jun 21 2013
# second Maple program:
b:= proc(n, i) option remember; `if`(i*(i+1)/2 (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..20); # Alois P. Heinz, Sep 27 2019
-
nn=10;p=Product[1+y x^i/i!,{i,1,nn}];Range[0,nn]! CoefficientList[ Series[p,{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Aug 30 2012 *)
A327826
Sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a set of size two.
Original entry on oeis.org
0, 0, 0, 3, 16, 125, 711, 5915, 46264, 438681, 4371085, 49321745, 588219523, 7751724513, 108240044745, 1633289839823, 26102966544024, 445098171557393, 8006283582196761, 152353662601600853, 3046062181913575921, 64015245150903376151, 1408108698825029286195
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; series(`if`(n=0, 1,
`if`(i<1, 0, add(x^signum(j)*b(n-i*j, i-1)*
multinomial(n, n-i*j, i$j), j=0..n/i))), x, 3)
end:
a:= n-> coeff(b(n$2), x, 2):
seq(a(n), n=0..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[x^Sign[j] b[n - i*j, i - 1] multinomial[n, Join[{n - i*j}, Table[i, {j}]]], {j, 0, n/i}]]], {x, 0, 3}];
a[n_] := SeriesCoefficient[b[n, n], {x, 0, 2}];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
Showing 1-6 of 6 results.
Comments