A005651
Sum of multinomial coefficients (n_1+n_2+...)!/(n_1!*n_2!*...) where (n_1, n_2, ...) runs over all integer partitions of n.
Original entry on oeis.org
1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 8879558, 98329551, 1191578522, 15543026747, 218668538441, 3285749117475, 52700813279423, 896697825211142, 16160442591627990, 307183340680888755, 6147451460222703502, 129125045333789172825, 2841626597871149750951
Offset: 0
For n=3, say the first three cans in the row contain red, white, and blue paint respectively. The objects can be painted r,r,r or r,r,w or r,w,b and then linearly ordered in 1 + 3 + 6 = 10 ways. - _Geoffrey Critzer_, Jun 08 2009
From _Gus Wiseman_, Sep 03 2018: (Start)
The a(3) = 10 ordered set partitions with weakly decreasing block sizes:
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
{{2},{3},{1}}
{{3},{1},{2}}
{{3},{2},{1}}
{{2,3},{1}}
{{1,2},{3}}
{{1,3},{2}}
{{1,2,3}}
(End)
- Abramowitz and Stegun, Handbook, p. 831, column labeled "M_1".
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 101 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. E. Hoffman, Updown categories: Generating functions and universal covers, arXiv preprint arXiv:1207.1705 [math.CO], 2012.
- A. Knopfmacher, A. M. Odlyzko, B. Pittel, L. B. Richmond, D. Stark, G. Szekeres, and N. C. Wormald, The Asymptotic Number of Set Partitions with Unequal Block Sizes, The Electronic Journal of Combinatorics, 6 (1999), R2.
- S. Schreiber & N. J. A. Sloane, Correspondence, 1980.
Cf.
A000041,
A000110,
A000258,
A000670,
A007837,
A008277,
A008480,
A036038,
A140585,
A178682,
A212855,
A247551,
A300335,
A318762.
-
A005651b := proc(k) add( d/(d!)^(k/d),d=numtheory[divisors](k)) ; end proc:
A005651 := proc(n) option remember; local k ; if n <= 1 then 1; else (n-1)!*add(A005651b(k)*procname(n-k)/(n-k)!, k=1..n) ; end if; end proc:
seq(A005651(k), k=0..10) ; # R. J. Mathar, Jan 03 2011
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0 or i=1, n!,
b(n, i-1) +binomial(n, i)*b(n-i, min(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 29 2015, Dec 12 2016
-
Table[Total[n!/Map[Function[n, Apply[Times, n! ]], IntegerPartitions[n]]], {n, 0, 20}] (* Geoffrey Critzer, Jun 08 2009 *)
Table[Total[Apply[Multinomial, IntegerPartitions[n], {1}]], {n, 0, 20}] (* Jean-François Alcover and Olivier Gérard, Sep 11 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[t==1, 1/n!, Sum[b[n-j, j, t-1]/j!, {j, i, n/t}]]; a[n_] := If[n==0, 1, n!*b[n, 0, n]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 20 2015, after Alois P. Heinz *)
-
a(m,n):=if n=m then 1 else sum(binomial(n,k)*a(k,n-k),k,m,(n/2))+1;
makelist(a(1,n),n,0,17); /* Vladimir Kruchinin, Sep 06 2014 */
-
a(n)=my(N=n!,s);forpart(x=n,s+=N/prod(i=1,#x,x[i]!));s \\ Charles R Greathouse IV, May 01 2015
-
{ my(n=25); Vec(serlaplace(prod(k=1, n, 1/(1-x^k/k!) + O(x*x^n)))) } \\ Andrew Howroyd, Dec 20 2017
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
A226873
Number A(n,k) of n-length words w over a k-ary alphabet {a1,a2,...,ak} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 0, where #(w,x) counts the letters x in word w; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 3, 4, 1, 0, 1, 1, 3, 10, 11, 1, 0, 1, 1, 3, 10, 23, 16, 1, 0, 1, 1, 3, 10, 47, 66, 42, 1, 0, 1, 1, 3, 10, 47, 126, 222, 64, 1, 0, 1, 1, 3, 10, 47, 246, 522, 561, 163, 1, 0, 1, 1, 3, 10, 47, 246, 882, 1821, 1647, 256, 1, 0
Offset: 0
A(4,3) = 23: aaaa, aaab, aaba, aabb, aabc, aacb, abaa, abab, abac, abba, abca, acab, acba, baaa, baab, baac, baba, baca, bbaa, bcaa, caab, caba, cbaa.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 3, 3, 3, 3, 3, 3, ...
0, 1, 4, 10, 10, 10, 10, 10, ...
0, 1, 11, 23, 47, 47, 47, 47, ...
0, 1, 16, 66, 126, 246, 246, 246, ...
0, 1, 42, 222, 522, 882, 1602, 1602, ...
0, 1, 64, 561, 1821, 3921, 6441, 11481, ...
Columns k=0-10 give:
A000007,
A000012,
A027306,
A092255,
A092429,
A226875,
A226876,
A226877,
A226878,
A226879,
A226880.
-
b:= proc(n, i, t) option remember;
`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n-j, j, t-1]/j!, {j, i, n/t}]]; a[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
A131632
Triangle T(n,k) read by rows = number of partitions of n-set into k blocks with distinct sizes, k = 1..A003056(n).
Original entry on oeis.org
1, 1, 1, 3, 1, 4, 1, 15, 1, 21, 60, 1, 63, 105, 1, 92, 448, 1, 255, 2016, 1, 385, 4980, 12600, 1, 1023, 15675, 27720, 1, 1585, 61644, 138600, 1, 4095, 155155, 643500, 1, 6475, 482573, 4408404, 1, 16383, 1733550, 12687675, 37837800, 1, 26332, 4549808, 60780720
Offset: 1
Triangle T(n,k)begins:
1;
1;
1, 3;
1, 4;
1, 15;
1, 21, 60;
1, 63, 105;
1, 92, 448;
1, 255, 2016;
1, 385, 4980, 12600;
1, 1023, 15675, 27720;
1, 1585, 61644, 138600;
1, 4095, 155155, 643500;
1, 6475, 482573, 4408404;
1, 16383, 1733550, 12687675, 37837800;
...
-
b:= proc(n, i, t, v) option remember; `if`(t=1, 1/(n+v)!,
add(b(n-j, j, t-1, v+1)/(j+v)!, j=i..n/t))
end:
T:= (n, k)->`if`(k*(k+1)/2>n, 0, n!*b(n-k*(k+1)/2, 0, k, 1)):
seq(seq(T(n, k), k=1..floor(sqrt(2+2*n)-1/2)), n=1..20);
# Alois P. Heinz, Jun 21 2013
# second Maple program:
b:= proc(n, i) option remember; `if`(i*(i+1)/2 (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..20); # Alois P. Heinz, Sep 27 2019
-
nn=10;p=Product[1+y x^i/i!,{i,1,nn}];Range[0,nn]! CoefficientList[ Series[p,{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Aug 30 2012 *)
A285824
Number T(n,k) of ordered set partitions of [n] into k blocks such that equal-sized blocks are ordered with increasing least elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 6, 1, 0, 1, 11, 18, 1, 0, 1, 30, 75, 40, 1, 0, 1, 52, 420, 350, 75, 1, 0, 1, 126, 1218, 3080, 1225, 126, 1, 0, 1, 219, 4242, 17129, 15750, 3486, 196, 1, 0, 1, 510, 14563, 82488, 152355, 63756, 8526, 288, 1, 0, 1, 896, 42930, 464650, 1049895, 954387, 217560, 18600, 405, 1
Offset: 0
T(3,1) = 1: 123.
T(3,2) = 6: 1|23, 23|1, 2|13, 13|2, 3|12, 12|3.
T(3,3) = 1: 1|2|3.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 6, 1;
0, 1, 11, 18, 1;
0, 1, 30, 75, 40, 1;
0, 1, 52, 420, 350, 75, 1;
0, 1, 126, 1218, 3080, 1225, 126, 1;
0, 1, 219, 4242, 17129, 15750, 3486, 196, 1;
...
Columns k=0-10 give:
A000007,
A057427,
A285917,
A285918,
A285919,
A285920,
A285921,
A285922,
A285923,
A285924,
A285925.
-
b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*x^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2, j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
seq(T(n), n=0..12);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n-i*j, i-1, p+j]*x^j*multinomial[n, Join[{n-i*j}, Table[i, j]]]/ j!^2, {j, 0, n/i}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n, 0]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 28 2018, after Alois P. Heinz *)
A213940
Triangle with entry a(n,m) giving the number of bracelets of n beads (dihedral D_n symmetry) with n colors available for each bead, but only m distinct fixed colors, say c[1],...,c[m], are present, with m from {1,...,n} and n>=1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 2, 3, 1, 3, 6, 6, 12, 1, 7, 20, 26, 30, 60, 1, 8, 40, 93, 150, 180, 360, 1, 18, 106, 424, 633, 1050, 1260, 2520, 1, 22, 304, 1180, 3260, 5040, 8400, 10080, 20160, 1, 46, 731, 4844, 16212, 29244, 45360, 75600, 90720, 181440
Offset: 1
n\m 1 2 3 4 5 6 7 8 9 10 ...
1 1
2 1 1
3 1 1 1
4 1 3 2 3
5 1 3 6 6 12
6 1 7 20 26 30 60
7 1 8 40 93 150 180 360
8 1 18 106 424 633 1050 1260 2520
9 1 22 304 1180 3260 5040 8400 10080 20160
10 1 46 731 4844 16212 29244 45360 75600 90720 181440
...
a(5,3) = 2 + 4 = 6, from A213939(5,4) + A213939(5,5), because k(5,3,1) = 4 and p(5,3) = 2.
a(2,1) = 1 because the partition [2] of n=2 with part number m=1 corresponds to the representative color multinomial (here monomial) c[1]^2 = c[1]*c[1], and there is one such representative bracelet. There is another bracelet color monomial in this class of n=2 colors where only m=1 color is active: c[2]*c[2]. See the triangle entry A213941(2,1)=2. The same holds for the necklace case.
a(3,1) = 1 from the color monomial representative c[1]^3. This class has 2 other members: c[2]^3 and c[3]^3. See A213941(3,1)=3. The same holds for the necklace case.
Like in the necklace case one has in general a(n,1)=1 and A213941(n,1) = n from the partition [n] providing the color signature and a representative c[1]^n.
a(3,2) = 1 from the representative color multinomial c[1]^2*c[2] (from the m=2 partition [2,1] of n=3) leading to just one representative bracelet (and necklace) cyclic(112) (when one uses j for color c[j]). The whole class consists of A213941(3,2)=6 bracelets (or necklaces): cyclic(112), cyclic(113), cyclic(221), cyclic(223), cyclic(331) and cyclic(332).
a(3,3) = 1. The representative color multinomial is c[1]*c[2]*c[3] (from the m=3 partition [1,1,1]). There is only one bracelet cyclic(1,2,3) which constitutes already the whole class (A213941(3,3)=1). The necklace cyclic(1,3,2) becomes equivalent under D_3.
a(4,2) = 3 from two representative color multinomials c[1]^3*c[2] and c[1]^2*c[2]^2 (from the two m=2 partitions of n=4: [3,1] and [2,2]). The first one has one representative bracelet, namely cyclic(1112), the second one leads to the two representative bracelets: cyclic(1122) and cyclic(1212). Together these are the 3 bracelets counted by a(4,2). The first color class c[.]^3*c[.] consists of 4*3=12 bracelets, when all 4 colors are used. The second one consists of 2*6=12 bracelets. Together they sum up to the 24 bracelets counted by A213941(4,2). In this example the necklace case does not differ from the bracelet one.
-
Cyc(v)={my(s=vecsum(v)); sumdiv(gcd(v), d, eulerphi(d)*(s/d)!/prod(i=1, #v, (v[i]/d)!))/s}
CPal(v)={my(odds=#select(t->t%2,v), s=vecsum(v)); if(odds>2, 0, ((s-odds)/2)!/prod(i=1, #v, (v[i]\2)!))}
T(n,k)={my(t=0); forpart(p=n, t+=Cyc(Vec(p))+CPal(Vec(p)), [1,n], [k,k]); t/2}
for(n=1, 10, for(k=1,n, print1(T(n,k), ", ")); print); \\ Andrew Howroyd, Sep 26 2017
-
\\ faster version; here U is A226874 as vector of polynomials.
U(n)={Vec(serlaplace(prod(k=1, n, 1/(1-y*x^k/k!) + O(x*x^n))))}
T(n)={my(t=U(n)); vector(n, n, vector(n, k, ((1/n)*sumdiv(n, d, eulerphi(n/d) * polcoeff(t[d+1], k)) + if(n%2, sum(d=0, (n-1)/2, binomial((n-1)/2, d)*polcoeff(t[d+1], (k-1))), polcoeff(t[n/2+1], k) + sum(d=0, n/2-1, binomial(n/2-1, d)*(2^d + if(d%2, 0, binomial(d, d/2)))*polcoeff(t[n/2-d], k-2))/2))/2))}
{ my(t=T(10)); for(n=1, #t, print(t[n])) } \\ Andrew Howroyd, Dec 22 2017
A327803
Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a set of size k; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 0, 7, 3, 0, 31, 16, 0, 121, 125, 0, 831, 711, 60, 0, 5041, 5915, 525, 0, 42911, 46264, 6328, 0, 364561, 438681, 67788, 0, 3742453, 4371085, 753420, 12600, 0, 39916801, 49321745, 8924685, 166320, 0, 486891175, 588219523, 113501784, 2966040
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 3;
0, 7, 3;
0, 31, 16;
0, 121, 125;
0, 831, 711, 60;
0, 5041, 5915, 525;
0, 42911, 46264, 6328;
0, 364561, 438681, 67788;
0, 3742453, 4371085, 753420, 12600;
...
-
with(combinat):
T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0), l=
select(x-> nops({x[]})=k, partition(n))):
seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..14);
# second Maple program:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(x^signum(j)*b(n-i*j, i-1)*
combinat[multinomial](n, n-i*j, i$j), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..14);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[x^Sign[j]*b[n - i*j, i-1]*multinomial[n, Join[{n-i*j}, Table[i, {j}]]], {j, 0, n/i}]]]];
T[n_] := CoefficientList[b[n, n], x];
T /@ Range[0, 14] // Flatten (* Jean-François Alcover, May 06 2020, after 2nd Maple program *)
A226881
Number of n-length binary words w with #(w,0) >= #(w,1) >= 1, where #(w,x) gives the number of digits x in w.
Original entry on oeis.org
0, 0, 2, 3, 10, 15, 41, 63, 162, 255, 637, 1023, 2509, 4095, 9907, 16383, 39202, 65535, 155381, 262143, 616665, 1048575, 2449867, 4194303, 9740685, 16777215, 38754731, 67108863, 154276027, 268435455, 614429671, 1073741823, 2448023842, 4294967295, 9756737701
Offset: 0
a(4) = 10: 0001, 0010, 0011, 0100, 0101, 0110, 1000, 1001, 1010, 1100.
-
a:= proc(n) option remember;
`if`(n<4, n*(n-1)*(4-n)/2, (9*(n-1)*(n-4) *a(n-1)
+(12-32*n+6*n^2) *a(n-2) -36*(n-2)*(n-4) *a(n-3)
+8*(n-3)*(3*n-10) *a(n-4))/ (n*(3*n-13)))
end:
seq(a(n), n=0..40);
-
Table[Sum[Binomial[n, i], {i, Floor[n/2]}], {n, 0, 30}] (* Wesley Ivan Hurt, Mar 14 2015 *)
-
a(n) = sum(i=1, n\2, binomial(n,i)); \\ Michel Marcus, Jul 15 2022
A213934
Triangle with entry a(n,m) giving the number of necklaces of n beads (C_N symmetry) with n colors available for each bead, but only m distinct fixed colors, say c[1],...,c[m], are present, with m from {1,...,n} and n>=1.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 3, 3, 6, 1, 3, 10, 12, 24, 1, 8, 31, 50, 60, 120, 1, 9, 71, 180, 300, 360, 720, 1, 22, 187, 815, 1260, 2100, 2520, 5040, 1, 29, 574, 2324, 6496, 10080, 16800, 20160, 40320, 1, 66, 1373, 9570, 32268, 58464, 90720, 151200, 181440, 362880
Offset: 1
n\m 1 2 3 4 5 6 7 8 9 10 ...
1 1
2 1 1
3 1 1 2
4 1 3 3 6
5 1 3 10 12 24
6 1 8 31 50 60 120
7 1 9 71 180 300 360 720
8 1 22 187 815 1260 2100 2520 5040
9 1 29 574 2324 6496 10080 16800 20160 40320
10 1 66 1373 9570 32268 58464 90720 151200 181440 362880
...
a(5,3) = 4 + 6 = 10, from A212359(5,4) + A212359(5,5), because k(5,3,1) = 4 and p(5,3) = 2.
a(2,1) = 1 because the partition [2] of n=2 with part number m=1 corresponds to the representative color multinomial (here monomial) c[1]^2=c[1]*c[1], and there is one such representative necklace. There is another necklace color monomial in this class of n=2 colors where only m=1 color is active: c[2]*c[2]. See the triangle entry A213935(2,1)=2.
a(3,1) = 1 from the color monomial representative c[1]^3. This class has 2 other members: c[2]^3 and c[3]^3. See A213935(3,1)=3.
In general a(n,1)=1 and A213935(n,1)=n from the partition [n] providing the color signature and a representative c[1]^n.
a(3,2)=1 from the representative color multinomial c[1]^2*c[2] (from the m=2 partition [2,1] of n=3) leading to just one representative necklace cyclic(112) (when one uses j for color c[j]). The whole class consists of A213935(3,2)=6 necklaces: cyclic(112), cyclic(113), cyclic(221), cyclic(223), cyclic(331) and cyclic(332).
a(3,3)=2. The representative color multinomial is c[1]*c[2]*c[3] (from the m=3 partition [1,1,1]). There are the two non-equivalent representative necklaces cyclic(1,2,3) and cyclic(1,3,2) which constitute already the whole class (A213935(3,3)=2).
a(4,2) = 3 from two representative color multinomials c[1]^3*c[2] and c[1]^2*c[2]^2 (from the two m=2 partitions of n=4: [3,1] and [2,2]). The first one has one representative necklace, namely cyclic(1112), the second one originates from two representative necklaces: cyclic(1122) and cyclic(1212). Together these are the 3 necklaces counted by a(4,2). The class with the first representative consists of 4*3=12 necklaces, when all 4 colors are used. The class of the second representative consists of 2*6=12 necklaces. Together they sum up to the 24 necklaces counted by A213935(4,2).
-
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]];
a226874[n_, k_] := If[n k == 0, If[n == k, 1, 0], n! b[n, 1, k]];
T[n_, k_] := (1/n) Sum[EulerPhi[n/d] a226874[d, k], {d, Divisors[n]}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 06 2018, after Alois P. Heinz and Andrew Howroyd *)
-
\\ here U is A226874 as vector of polynomials.
U(n)={Vec(serlaplace(prod(k=1, n, 1/(1-y*x^k/k!) + O(x*x^n))))}
C(n)={my(t=U(n)); vector(n, n, vector(n, k, (1/n)*sumdiv(n, d, eulerphi(n/d) * polcoeff(t[d+1], k))))}
{ my(t=C(10)); for(n=1, #t, print(t[n])) } \\ Andrew Howroyd, Dec 20 2017
A226882
Number of n-length words w over ternary alphabet {a,b,c} such that #(w,a) >= #(w,b) >= #(w,c) >= 1, where #(w,x) counts the letters x in word w.
Original entry on oeis.org
6, 12, 50, 180, 497, 1484, 5154, 13680, 41327, 134508, 368095, 1095367, 3521156, 9733564, 29025290, 92208816, 257946527, 769203752, 2428043309, 6848294497, 20442949562, 64191187508, 182286409175, 544512163065, 1702858693902, 4861764643419, 14531465607434
Offset: 3
a(4) = 12: aabc, aacb, abac, abca, acab, acba, baac, baca, bcaa, caab, caba, cbaa.
-
Table[Sum[n!/Product[IntegerPartitions[n,{3}][[k,j]]!,{j,1,3}],{k,1,Length[IntegerPartitions[n,{3}]]}],{n,3,30}] (* Vaclav Kotesovec, Aug 29 2014 *)
A226883
Number of n-length words w over a 4-ary alphabet {a1,a2,...,a4} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a4) >= 1, where #(w,x) counts the letters x in word w.
Original entry on oeis.org
24, 60, 300, 1260, 6496, 20916, 95640, 353760, 1600104, 5626764, 23844002, 88442445, 387629456, 1389902524, 5788974504, 21752247660, 93252286444, 340374221376, 1409907258122, 5335751835865, 22620834658096, 83728749708760, 345377277971570, 1315699675342065
Offset: 4
-
Table[Sum[n!/Product[IntegerPartitions[n,{4}][[k,j]]!,{j,1,4}],{k,1,Length[ IntegerPartitions[n,{4}]]}],{n,4,20}] (* Vaclav Kotesovec, Jul 01 2013 *)
Showing 1-10 of 18 results.
Comments