cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A033312 a(n) = n! - 1.

Original entry on oeis.org

0, 0, 1, 5, 23, 119, 719, 5039, 40319, 362879, 3628799, 39916799, 479001599, 6227020799, 87178291199, 1307674367999, 20922789887999, 355687428095999, 6402373705727999, 121645100408831999, 2432902008176639999, 51090942171709439999, 1124000727777607679999
Offset: 0

Views

Author

N. J. A. Sloane. This sequence appeared in the 1973 "Handbook", but was then dropped from the database. Resubmitted by Eric W. Weisstein. Entry revised by N. J. A. Sloane, Jun 12 2012

Keywords

Comments

a(n) gives the index number in any table of permutations of the entry in which the last n + 1 items are reversed. - Eugene McDonnell (eemcd(AT)mac.com), Dec 03 2004
a(n), n >= 1, has the factorial representation [n - 1, n - 2, ..., 1, 0]. The (unique) factorial representation of a number m from {0, 1, ... n! - 1} is m = sum(m_j(n)*j!, j = 0 .. n - 1) with m_j(n) from {0, 1, .., j}, n>=1. This is encoded as [m_{n-1},m_{n-2},...,m+1,m_0] with m_0=0. This can be interpreted as (D. N.) Lehmer code for the lexicographic rank of permutations of the symmetric group S_n (see the W. Lang link under A136663). The Lehmer code [n - 1, n - 2, ..., 1, 0] stands for the permutation [n, n - 1, ..., 1] (the last in lexicographic order). - Wolfdieter Lang, May 21 2008
For n >= 3: a(n) = numbers m for which there is one iteration {floor (r / k)} for k = n, n - 1, n - 2, ... 2 with property r mod k = k - 1 starting at r = m. For n = 5: a(5) = 119; floor (119 / 5) = 23, 119 mod 5 = 4; floor (23 / 4) = 5, 23 mod 4 = 3; floor (5 / 3) = 1, 5 mod 3 = 2; floor (1 / 2) = 0; 1 mod 2 = 1. - Jaroslav Krizek, Jan 23 2010
For n = 4, define the sum of all possible products of 1, 2, 3, 4 to be 1 + 2 + 3 + 4 add 1*2 + 1*3 + 1*4 add 2*3 + 2*4 + 3*4 add 1*2*3 + 1*2*4 + 1*3*4 + 2*3*4 add 1*2*3*4. The sum of this is 119 = (4 + 1)! - 1. For n = 5 I get the sum 719 = (5 + 1)! - 1. The proof for the general case seems to follow by induction. - J. M. Bergot, Jan 10 2011

Examples

			G.f. = x^2 + 5*x^3 + 23*x^4 + 119*x^5 + 719*x^6 + 5039*x^7 + 40319*x^8 + ...
		

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 181, p. 92.
  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 6, 1969, p. 3, 1993.
  • Problem 598, J. Rec. Math., 11 (1978), 68-69.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Cf. A000142, A001563 (first differences), A002582, A002982, A038507 (factorizations), A054415, A056110, A331373.
Row sums of A008291.

Programs

Formula

a(n) = Sum_{k = 1 .. n} (k-1)*(k-1)!.
a(n) = a(n - 1)*(n - 1) + a(n - 1) + n - 1, a(0) = 0. - Reinhard Zumkeller, Feb 03 2003
a(0) = a(1) = 0, a(n) = a(n - 1) * n + (n - 1) for n >= 2. - Jaroslav Krizek, Jan 23 2010
E.g.f.: 1/(1 - x) - exp(x). - Sergei N. Gladkovskii, Jun 29 2012
0 = 1 + a(n)*(+a(n+1) - a(n+2)) + a(n+1)*(+3 + a(n+1)) + a(n+2)*(-1) for n>=0. - Michael Somos, Feb 24 2017
Sum_{n>=2} 1/a(n) = A331373. - Amiram Eldar, Nov 11 2020

A327826 Sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a set of size two.

Original entry on oeis.org

0, 0, 0, 3, 16, 125, 711, 5915, 46264, 438681, 4371085, 49321745, 588219523, 7751724513, 108240044745, 1633289839823, 26102966544024, 445098171557393, 8006283582196761, 152353662601600853, 3046062181913575921, 64015245150903376151, 1408108698825029286195
Offset: 0

Views

Author

Alois P. Heinz, Sep 26 2019

Keywords

Crossrefs

Column k=2 of A327803.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; series(`if`(n=0, 1,
         `if`(i<1, 0, add(x^signum(j)*b(n-i*j, i-1)*
          multinomial(n, n-i*j, i$j), j=0..n/i))), x, 3)
        end:
    a:= n-> coeff(b(n$2), x, 2):
    seq(a(n), n=0..25);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = Series[If[n == 0, 1, If[i < 1, 0, Sum[x^Sign[j] b[n - i*j, i - 1] multinomial[n, Join[{n - i*j}, Table[i, {j}]]], {j, 0, n/i}]]], {x, 0, 3}];
    a[n_] := SeriesCoefficient[b[n, n], {x, 0, 2}];
    a /@ Range[0, 25] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * n!, where c = Sum_{k>=2} 1/(k! - 1) = A331373 = 1.253498755699953471643360937905798940369232208332... - Vaclav Kotesovec, Sep 28 2019, updated Jul 19 2021

A100685 Powers of factorials A000142.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 24, 32, 36, 64, 120, 128, 216, 256, 512, 576, 720, 1024, 1296, 2048, 4096, 5040, 7776, 8192, 13824, 14400, 16384, 32768, 40320, 46656, 65536, 131072, 262144, 279936, 331776, 362880, 518400, 524288, 1048576, 1679616, 1728000
Offset: 1

Views

Author

Kyle Schalm and Jonathan Sondow, Dec 08 2004

Keywords

Comments

Subsequence of A001013. Supersequence of A036740 without its first term.
Supersequence also of A046882 and A055209 without their first terms. - Jonathan Sondow and Robert G. Wilson v, Dec 19 2004

Examples

			24 = (4!)^1 and 36 = (3!)^2.
		

Crossrefs

Cf. also A046882 and A055209.
Subsequences: A000079, A000400, A009968.

Programs

  • Mathematica
    With[{ln = Log[10!]}, Table[With[{f = m!}, Table[f^j, {j, 0, Floor[ln/Log[f]]}]], {m, 2, 10}]] //Flatten //Union

Formula

Sum_{n>=1} 1/a(n) = 1 + A331373. - Amiram Eldar, Nov 21 2021
Showing 1-3 of 3 results.