A327838 Decimal expansion of the asymptotic mean of the exponential totient function (A072911).
1, 2, 5, 2, 7, 0, 7, 7, 8, 5, 3, 7, 5, 4, 4, 6, 1, 2, 6, 0, 5, 3, 7, 5, 0, 7, 5, 1, 9, 3, 4, 2, 8, 3, 0, 6, 0, 4, 3, 9, 2, 3, 7, 9, 6, 7, 1, 0, 8, 9, 1, 5, 3, 7, 3, 7, 4, 4, 8, 4, 9, 5, 1, 4, 0, 2, 9, 5, 7, 8, 3, 4, 3, 8, 6, 5, 4, 4, 2, 8, 6, 5, 0, 9, 5, 3, 7
Offset: 1
Examples
1.252707785375446126053750751934283060439237967108915...
Links
- László Tóth, On certain arithmetic functions involving exponential divisors, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 24 (2004), pp. 285-294.
Programs
-
Mathematica
$MaxExtraPrecision = 500; m = 500; f[x_] := Log[1 + Sum[x^e * (EulerPhi[e] - EulerPhi[e - 1]), {e, 3, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[f[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]