cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A072911 Number of "phi-divisors" of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Yasutoshi Kohmoto, Aug 21 2002

Keywords

Comments

If n = Product p(i)^r(i), d = Product p(i)^s(i), = s(i)<=r(i) and gcd(s(i), r(i)) = 1, then d is a phi-divisor of n.
The integers n = Product_{i=1..r} p_i^{a_i} and m = Product_{i=1..r} p_i^{b_i}, a_i, b_i >= 1 (1 <= i <= r) having the same prime factors are called exponentially coprime, if gcd(a_i, b_i) = 1 for every 1 <= i <= r, i.e., the only common exponential divisor of n and m is Product_{i=1..r} p_i = the common squarefree kernel of n and m, cf. A049419, A007947. The terms of this sequence count the divisors d of n such that d and n are exponentially coprime. - Laszlo Toth, Oct 06 2008

References

  • József Sándor, On an exponential totient function, Studia Univ. Babes-Bolyai, Math., 41 (1996), 91-94. [Laszlo Toth, Oct 06 2008]

Crossrefs

Programs

  • Haskell
    a072911 = product . map (a000010 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
  • Maple
    A072911 := proc(n)
        local a, p;
        a := 1 ;
        for p in ifactors(n)[2] do
            a := a*numtheory[phi](op(2, p)) ;
        od:
        a ;
    end:
    seq(A072911(n),n=1..100) ; # R. J. Mathar, Sep 25 2008
  • Mathematica
    a[n_] := Times @@ EulerPhi[FactorInteger[n][[All, 2]]];
    Array[a, 105] (* Jean-François Alcover, Nov 16 2017 *)

Formula

If n = Product p(i)^r(i) then a(n) = Product (phi(r(i))), where phi(k) is the Euler totient function of k, cf. A000010.
Sum_{k=1..n} a(k) ~ c_1 * n + c_2 * n^(1/3) + O(n^(1/5+eps)), where c_1 = A327838 (Tóth, 2004). - Amiram Eldar, Oct 30 2022

Extensions

More terms from R. J. Mathar, Sep 25 2008

A361012 Multiplicative with a(p^e) = sigma(e), where sigma = A000203.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 3, 1, 1, 1, 7, 1, 3, 1, 3, 1, 1, 1, 4, 3, 1, 4, 3, 1, 1, 1, 6, 1, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 7, 3, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 12, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 3, 3, 1, 1, 1, 7, 7, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := DivisorSigma[1, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(sigma, factor(n)[, 2])); \\ Amiram Eldar, Jan 07 2025
  • Python
    from math import prod
    from sympy import divisor_sigma, factorint
    def A361012(n): return prod(divisor_sigma(e) for e in factorint(n).values()) # Chai Wah Wu, Feb 28 2023
    

Formula

Dirichlet g.f.: Product_{p prime} (1 + Sum_{e>=1} sigma(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma(e) - sigma(e-1)) / p^e) = 2.96008030202494141048182047811089469392843909592516341... = A361013

A361013 Decimal expansion of a constant related to the asymptotics of A361012.

Original entry on oeis.org

2, 9, 6, 0, 0, 8, 0, 3, 0, 2, 0, 2, 4, 9, 4, 1, 4, 1, 0, 4, 8, 1, 8, 2, 0, 4, 7, 8, 1, 1, 0, 8, 9, 4, 6, 9, 3, 9, 2, 8, 4, 3, 9, 0, 9, 5, 9, 2, 5, 1, 6, 3, 4, 1, 1, 9, 6, 7, 5, 0, 4, 4, 8, 0, 8, 6, 6, 3, 3, 9, 3, 5, 7, 8, 7, 3, 7, 3, 8, 2, 4, 9, 5, 8, 4, 6, 2, 6, 7, 3, 8, 5, 0, 1, 0, 8, 0, 5, 1, 7, 8, 6, 0, 6, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 28 2023

Keywords

Examples

			2.960080302024941410481820478110894693928439095925163411967504480866339...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; smax = 500; Do[Clear[f]; f[p_] := 1 + Sum[(DivisorSigma[1, e] - DivisorSigma[1, e-1])/p^e, {e, 2, emax}]; cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, smax}], x, smax + 1]]; Print[f[2] * f[3] * f[5] * f[7] * Exp[N[Sum[cc[[n]]*(PrimeZetaP[n] - 1/2^n - 1/3^n - 1/5^n - 1/7^n), {n, 2, smax}], 120]]], {emax, 100, 1000, 100}]

Formula

Equals limit_{n->oo} A361012(n) / n.
Equals Product_{p prime} (1 + Sum_{e>=2} (sigma(e) - sigma(e-1)) / p^e), where sigma = A000203.

A358658 Decimal expansion of the asymptotic mean of the e-unitary Euler function (A321167).

Original entry on oeis.org

1, 3, 0, 7, 3, 2, 1, 3, 7, 1, 7, 0, 6, 0, 7, 2, 3, 6, 9, 2, 9, 6, 4, 2, 2, 8, 0, 4, 2, 5, 3, 9, 8, 8, 3, 9, 1, 4, 2, 7, 4, 3, 4, 6, 8, 6, 0, 8, 2, 3, 9, 4, 0, 9, 8, 0, 1, 5, 3, 6, 3, 5, 6, 9, 8, 1, 7, 0, 0, 9, 7, 0, 8, 9, 0, 0, 8, 4, 9, 7, 3, 2, 2, 0, 0, 7, 2, 0, 2, 5, 4, 0, 4, 5, 4, 8, 4, 4, 8, 1, 2, 9, 7, 2, 9
Offset: 1

Views

Author

Amiram Eldar, Nov 25 2022

Keywords

Examples

			1.307321371706072369296422804253988391427434686082394...
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; $MaxExtraPrecision = 500; m = 500; fun[x_] := Log[1 + Sum[x^e*(uphi[e] - uphi[e - 1]), {e, 3, m}]]; c = Rest[CoefficientList[Series[fun[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[fun[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals lim_{m->oo} (1/m) Sum_{k=1..m} A321167(k).
Equals Product_{p prime} (1 + Sum_{e >= 3} (uphi(e) - uphi(e-1))/p^e), where uphi is the unitary totient function (A047994).
Showing 1-4 of 4 results.